public static void test()
        {
            AvilaDataProcessing dataProcessing = new AvilaDataProcessing(new AvilaDataConverter(new AvilaClassifier()));
            AvilaEvaluater      evaluater      = new AvilaEvaluater(new AvilaDataConverter(new AvilaClassifier()));
            var inputDataSet   = dataProcessing.GetData(@"C:\Work\DataSets\avila\avila-tr.txt");
            var processDataSet = dataProcessing.GetProcessDataCollection(10000, inputDataSet);

            ProcessData[] trainDataSet;
            ProcessData[] testDataSet;
            (trainDataSet, testDataSet) = dataProcessing.DivideCollection(0.7, processDataSet);
            trainDataSet = trainDataSet.Take(6000).ToArray();
            //Model avilaFNN = new Model(new CrossEntropyLoss(),
            //    new FullConnectLayer(new Direct(), 10, 10, true, new Normal()),
            //    new FullConnectLayer(new Sigmoid(), 10, 12, false, new Normal()),
            //    new FullConnectLayer(new LeakyReLU(0.1), 12, 16, false, new Normal()),
            //    new SoftMaxLayer(16, 12, new Normal())
            //    );
            Model avilaFNN = new Model(new CrossEntropyLoss(), "AvilaFNN",
                                       new FullConnectLayer(new Direct(1), 10, 10, true, new Normal()),
                                       new FullConnectLayer(new Sigmoid(), 10, 16, false, new Normal(0, 2)),
                                       new SoftMaxLayer(16, 12, new Normal(0, 5))
                                       );
            Trainer trainer1 = new Trainer(100, false, 0, new ExponentialDelayOptimizer(1, 0.9, 0.1));

            //Trainer trainer2 = new Trainer(200, false, 0, new ExponentialDelayOptimizer(2, 0.95, 0.08));
            avilaFNN     = (Model)trainer1.Train(avilaFNN, trainDataSet);
            trainDataSet = trainDataSet.SelectPermutation().ToArray();
            //Console.WriteLine(avilaFNN.layers[2].Weight[0,0]);
            Console.WriteLine(evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            avilaFNN = (Model)trainer1.Train(avilaFNN, trainDataSet);
            //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            Console.WriteLine(evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //for (int i = 0; i <= 49; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToList();
            //    Trainer trainer2 = new Trainer(60, false, 0, new ExponentialDelayOptimizer(2, 0.95, 0.05));
            //    avilaFNN = (Model)trainer2.Train(avilaFNN, trainDataSet);
            //    //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            //    Console.WriteLine($"第1轮第{i}次循环:"+evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            //for (int i = 0; i <= 49; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToList();
            //    Trainer trainer2 = new Trainer(200, false, 0, new ExponentialDelayOptimizer(5, 0.9, 0.05));
            //    avilaFNN = (Model)trainer2.Train(avilaFNN, trainDataSet);
            //    //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            //    Console.WriteLine($"第2轮第{i}次循环:"+ evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            //for (int i = 0; i <= 1; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToList();
            //    Trainer trainer2 = new Trainer(600, false, 0, new ExponentialDelayOptimizer(10, 0.9, 0.02));
            //    avilaFNN = (Model)trainer2.Train(avilaFNN, trainDataSet);
            //    //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            //    Console.WriteLine(evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            //for (int i = 0; i <= 99; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToList();
            //    Trainer trainer2 = new Trainer(200, false, 0, new ExponentialDelayOptimizer(5, 0.95, 0.02));
            //    avilaFNN = (Model)trainer2.Train(avilaFNN, trainDataSet);
            //    //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            //    Console.WriteLine($"第3轮第{i}次循环:"+evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            //for (int i = 0; i <= 1; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToList();
            //    Trainer trainer2 = new Trainer(600, false, 0, new ExponentialDelayOptimizer(10, 0.9, 0.02));
            //    avilaFNN = (Model)trainer2.Train(avilaFNN, trainDataSet);
            //    //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            //    Console.WriteLine(evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            //for (int i = 0; i <= 149; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToList();
            //    Trainer trainer2 = new Trainer(100, false, 0, new ExponentialDelayOptimizer(1, 0.98, 0.01));
            //    avilaFNN = (Model)trainer2.Train(avilaFNN, trainDataSet);
            //    //Console.WriteLine(avilaFNN.layers[2].Weight[0, 0]);
            //    Console.WriteLine($"第4轮第{i}次循环:"+evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            evaluater.EvaluateInDetails(testDataSet, avilaFNN, new AvilaClassifier());
        }
Exemple #2
0
        public static void train(string dataPath)
        {
            //define dataprocesser
            AvilaDataProcessing dataProcessing = new AvilaDataProcessing(new AvilaDataConverter(new AvilaClassifier()));
            //define evaluater
            AvilaEvaluater evaluater = new AvilaEvaluater(new AvilaDataConverter(new AvilaClassifier()));
            //create dataset
            var inputDataSet   = dataProcessing.GetData(dataPath);
            var processDataSet = dataProcessing.GetProcessDataCollection(10000, inputDataSet);

            ProcessData[] trainDataSet;
            ProcessData[] testDataSet;
            (trainDataSet, testDataSet) = dataProcessing.DivideCollection(0.7, processDataSet);
            trainDataSet = trainDataSet.Take(6000).ToArray();

            //define the model
            Model avilaFNN = new Model(new CrossEntropyLoss(), "AvilaFNN",
                                       new FullConnectLayer(new Direct(1), 10, 10, true, new Normal()),
                                       new FullConnectLayer(new Sigmoid(), 10, 16, false, new Normal()),
                                       new SoftMaxLayer(16, 12, new Normal())
                                       );
            //define optimizer
            Trainer trainer = new Trainer(100, false, 0, new ExponentialDelayOptimizer(2, 0.95, 0.1));

            //train
            for (int i = 0; i <= 19; i++)
            {
                trainDataSet = trainDataSet.SelectPermutation().ToArray();
                trainer      = new Trainer(100, false, 0, new ExponentialDelayOptimizer(0.5, 0.9, 0.08));
                avilaFNN     = (Model)trainer.Train(avilaFNN, trainDataSet);
                Console.WriteLine($"epoch {i}:" + evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            }

            for (int i = 0; i <= 19; i++)
            {
                trainDataSet = trainDataSet.SelectPermutation().ToArray();
                trainer      = new Trainer(60, false, 0, new ExponentialDelayOptimizer(0.5, 0.9, 0.05));
                avilaFNN     = (Model)trainer.Train(avilaFNN, trainDataSet);
                Console.WriteLine($"epoch {i}:" + evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            }

            for (int i = 0; i <= 19; i++)
            {
                trainDataSet = trainDataSet.SelectPermutation().ToArray();
                trainer      = new Trainer(30, false, 0, new ExponentialDelayOptimizer(0.2, 0.9, 0.05));
                avilaFNN     = (Model)trainer.Train(avilaFNN, trainDataSet);
                Console.WriteLine($"epoch {i}:" + evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            }

            //for (int i = 0; i <= 49; i++)
            //{
            //    trainDataSet = trainDataSet.SelectPermutation().ToArray();
            //    trainer = new Trainer(5, false, 0, new ExponentialDelayOptimizer(0.05, 0.9, 0.1));
            //    avilaFNN = (Model)trainer.Train(avilaFNN, trainDataSet);
            //    Console.WriteLine($"epoch {i}:" + evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}
            //for (int i = 0; i <= 99; i++)
            //{
            //    trainer = new Trainer(64, false, 0, new ExponentialDelayOptimizer(0.2, 0.95, 0.1));
            //    avilaFNN = (Model)trainer.Train(avilaFNN, trainDataSet);
            //    Console.WriteLine($"epoch {i}:" + evaluater.Evaluate(testDataSet, avilaFNN, new AvilaClassifier()));
            //}

            //evaluate
            evaluater.EvaluateInDetails(trainDataSet, avilaFNN, new AvilaClassifier());
            evaluater.EvaluateInDetails(testDataSet, avilaFNN, new AvilaClassifier());
        }