Exemple #1
0
        static void Main(string[] args)
        {
            using (Pipeline pipeline = Pipeline.Create())
            {
                var merger = new SpeechMerger(pipeline);
                var timer  = new Timer <string>(pipeline, 1100, TestGen);
                var timer2 = new Timer <string>(pipeline, 2100, TestGen);

                timer.PipeTo(merger);
                timer2.PipeTo(merger.OtherIn);
                merger.Do(x => Console.WriteLine(x));

                pipeline.RunAsync();

                Console.WriteLine("Press any key to exit...");
                Console.ReadKey(true);
            }
        }
        public static void Main(string[] args)
        {
            bool   detected        = false;
            bool   usingKqml       = true;
            string facilitatorIP   = args[0];
            int    facilitatorPort = int.Parse(args[1]);
            int    localPort       = int.Parse(args[2]);

            InitTimer();

            Console.WriteLine("Starting Kinect-based Kiosk.  Verify that Kinect is setup before continuing");

            using (Pipeline pipeline = Pipeline.Create())
            {
                // Components
                Microsoft.Psi.Kinect.v1.KinectSensor kinectSensor = new Microsoft.Psi.Kinect.v1.KinectSensor(pipeline);

                Microsoft.Psi.Kinect.v1.SkeletonFaceTracker faceTracker = new Microsoft.Psi.Kinect.v1.SkeletonFaceTracker(pipeline, kinectSensor.kinectSensor);

                var speechDetector = new SystemVoiceActivityDetector(pipeline);

                var recognizer = Speech.Program.CreateSpeechRecognizer(pipeline);

                var merger = new Speech.SpeechMerger(pipeline);

                var synthesizer = Speech.Program.CreateSpeechSynthesizer(pipeline);

                NU.Kqml.SocketStringConsumer kqml = null;

                NU.Kqml.KioskInputTextPreProcessor preproc = new NU.Kqml.KioskInputTextPreProcessor(pipeline, (SystemSpeechRecognizer)recognizer);

                KioskUI.KioskUI ui = new KioskUI.KioskUI(pipeline);

                // Wiring together the components
                var joinedFrames = kinectSensor.ColorImage.Join(kinectSensor.DepthImage).Join(kinectSensor.Skeletons);

                joinedFrames.PipeTo(faceTracker);

                var mouthOpenAsFloat = faceTracker.FaceDetected.Select((bool x) =>
                {
                    if (!detected)
                    {
                        Console.WriteLine("Face found");
                        detected = true;
                    }
                    return(x ? 1.0 : 0.0);
                });

                // Hold faceDetected to true for a while, even after face is gone
                var faceDetected = mouthOpenAsFloat.Hold(0.1, 0.05);
                faceDetected.PipeTo(ui.FaceDetected);

                // Send audio to recognizer if face is detected and ready to accept more input
                //kinectSensor.Audio.Join(faceDetected, _300ms).Where(result => result.Item2 && isAccepting).Select(pair => {
                //    return pair.Item1;
                //}).PipeTo(recognizer);
                kinectSensor.Audio.Join(faceDetected, _300ms).Pair(synthesizer.StateChanged).Where(result => result.Item2 && result.Item3.State == System.Speech.Synthesis.SynthesizerState.Ready).Select(pair => {
                    return(pair.Item1);
                }).PipeTo(recognizer);

                // Get final results of speech recognition
                var finalResults = recognizer.Out.Where(result => result.IsFinal);

                var recognitionResult = finalResults.Select(r =>  // Need to add a Where Item2, but skipping for now
                {
                    var ssrResult = r as IStreamingSpeechRecognitionResult;
                    Console.WriteLine($"{ssrResult.Text} (confidence: {ssrResult.Confidence})");
                    return(ssrResult);
                });

                if (usingKqml)
                {
                    Console.WriteLine("Setting up connection to Companion");
                    int facilitatorPort_num = Convert.ToInt32(facilitatorPort);
                    int localPort_num       = Convert.ToInt32(localPort);
                    Console.WriteLine("Your Companion IP address is: " + facilitatorIP);
                    Console.WriteLine("Your Companion port is: " + facilitatorPort);
                    Console.WriteLine("Your local port is: " + localPort);

                    // setup interface to Companion
                    kqml = new NU.Kqml.SocketStringConsumer(pipeline, facilitatorIP, facilitatorPort_num, localPort_num);

                    // Send user input to preprocess
                    recognitionResult.PipeTo(preproc.In);

                    // Set accepting flag based on preprocessor output
                    var non_trivial_result = preproc.Out.Where(x => {
                        if (x == null)
                        {
                            //setAccepting();
                            return(false);
                        }
                        else
                        {
                            //setNotAccepting();
                            return(true);
                        }
                    });

                    preproc.AutoResponse.PipeTo(merger.OtherIn);

                    // Send processed user input to Companion and UI
                    non_trivial_result.PipeTo(kqml.In);
                    non_trivial_result.PipeTo(ui.UserInput);
                    non_trivial_result.PipeTo(merger.LastOut);

                    // Get response from Companion and forward to UI and synthesizer
                    kqml.Out.Do(x => Console.WriteLine(x));
                    kqml.Out.PipeTo(merger.In);
                    merger.Out.PipeTo(ui.CompResponse);
                    merger.Out.PipeTo(synthesizer);

                    // When speaking complete, ready to accept more input
                    //synthesizer.SpeakCompleted.Delay(_500ms).Do(x => setAccepting());
                }
                else
                {
                    Console.WriteLine("Status: Not using KQML");

                    recognitionResult.PipeTo(preproc.In);

                    var non_trivial_result = preproc.Out.Where(x => {
                        if (x == null)
                        {
                            setAccepting();
                            return(false);
                        }
                        else
                        {
                            setNotAccepting();
                            return(true);
                        }
                    });
                    non_trivial_result.PipeTo(ui.UserInput);
                    var delayed = non_trivial_result.Select(result =>
                    {
                        Thread.Sleep(3000);
                        return(result);
                    });
                    TimeSpan the_wait = TimeSpan.FromSeconds(13.0);
                    delayed.PipeTo(ui.CompResponse);
                    delayed.PipeTo(synthesizer);
                    synthesizer.SpeakCompleted.Do(x => setAccepting());
                }

                // Setup psi studio visualizations
                //SetupDataStore(pipeline, @"..\..\..\Videos\" + AppName, "", true, kinectSensor, faceTracker, finalResults);

                // Register an event handler to catch pipeline errors
                pipeline.PipelineCompletionEvent += PipelineCompletionEvent;

                // Run the pipeline
                pipeline.RunAsync();

                Console.WriteLine("Press any key to exit...");
                Console.ReadKey(true);
            }
        }