//-----------------------------------------------------------------------
        public static void _extrudeCapImpl(ref TriangleBuffer buffer, MultiShape multiShapeToExtrude, MultiPath extrusionMultiPath, TrackMap scaleTracks, TrackMap rotationTracks)
        {
            std_vector <int> indexBuffer = new std_vector <int>();
            // PointList pointList;
            std_vector <Vector2> pointList = new std_vector <Vector2>();

            Triangulator t = new Triangulator();

            t.setMultiShapeToTriangulate(multiShapeToExtrude);
            t.triangulate(indexBuffer, pointList);

            for (uint i = 0; i < extrusionMultiPath.getPathCount(); ++i)
            {
                Path  extrusionPath = extrusionMultiPath.getPath((int)i);
                Track scaleTrack    = null;
                Track rotationTrack = null;
                if (scaleTracks.find(i) != -1)         // scaleTracks.end())
                {
                    scaleTrack = scaleTracks[i];       //.find(i).second;
                }
                if (rotationTracks.find(i) != -1)      // rotationTracks.end())
                {
                    rotationTrack = rotationTracks[i]; //.find(i).second;
                }
                //begin cap
                //if (extrusionMultiPath.getIntersectionsMap().find(MultiPath.PathCoordinate(i, 0)) == extrusionMultiPath.getIntersectionsMap().end())
                if (extrusionMultiPath.getIntersectionsMap().find(new MultiPath.PathCoordinate(i, 0)) == -1)
                {
                    buffer.rebaseOffset();
                    buffer.estimateIndexCount((uint)indexBuffer.Count);
                    buffer.estimateVertexCount((uint)pointList.Count);

                    Quaternion qBegin = Utils._computeQuaternion(extrusionPath.getDirectionAfter(0));
                    if (rotationTrack != null)
                    {
                        float angle = rotationTrack.getFirstValue();
                        qBegin = qBegin * new Quaternion((Radian)angle, Vector3.UNIT_Z);
                    }
                    float scaleBegin = 1.0f;
                    if (scaleTrack != null)
                    {
                        scaleBegin = scaleTrack.getFirstValue();
                    }

                    for (int j = 0; j < pointList.size(); j++)
                    {
                        Vector2 vp2    = pointList[j];
                        Vector3 vp     = new Vector3(vp2.x, vp2.y, 0);
                        Vector3 normal = -Vector3.UNIT_Z;

                        Vector3 newPoint = extrusionPath.getPoint(0) + qBegin * (scaleBegin * vp);
                        buffer.vertex(newPoint, qBegin * normal, vp2);
                    }
                    for (int i2 = 0; i2 < indexBuffer.Count / 3; i2++)
                    {
                        buffer.index(indexBuffer[i2 * 3]);
                        buffer.index(indexBuffer[i2 * 3 + 2]);
                        buffer.index(indexBuffer[i2 * 3 + 1]);
                    }
                }

                //end cap
                //if (extrusionMultiPath.getIntersectionsMap().find(MultiPath.PathCoordinate(i, extrusionPath.getSegCount())) == extrusionMultiPath.getIntersectionsMap().end())
                if (extrusionMultiPath.getIntersectionsMap().find(new MultiPath.PathCoordinate(i, (uint)extrusionPath.getSegCount())) == -1)
                {
                    buffer.rebaseOffset();
                    buffer.estimateIndexCount((uint)indexBuffer.Count);
                    buffer.estimateVertexCount((uint)pointList.Count);

                    Quaternion qEnd = Utils._computeQuaternion(extrusionPath.getDirectionBefore(extrusionPath.getSegCount()));
                    if (rotationTrack != null)
                    {
                        float angle = rotationTrack.getLastValue();
                        qEnd = qEnd * new Quaternion((Radian)angle, Vector3.UNIT_Z);
                    }
                    float scaleEnd = 1.0f;
                    if (scaleTrack != null)
                    {
                        scaleEnd = scaleTrack.getLastValue();
                    }

                    for (int j = 0; j < pointList.Count; j++)
                    {
                        Vector2 vp2 = pointList[j];
                        Vector3 vp  = new Vector3(vp2.x, vp2.y, 0f);
                        //C++ TO C# CONVERTER WARNING: The following line was determined to be a copy constructor call - this should be verified and a copy constructor should be created if it does not yet exist:
                        //ORIGINAL LINE: Vector3 normal = Vector3::UNIT_Z;
                        Vector3 normal = (Vector3.UNIT_Z);

                        Vector3 newPoint = extrusionPath.getPoint(extrusionPath.getSegCount()) + qEnd * (scaleEnd * vp);
                        buffer.vertex(newPoint, qEnd * normal, vp2);
                    }
                    for (int ii = 0; ii < indexBuffer.Count / 3; ii++)
                    {
                        buffer.index(indexBuffer[ii * 3]);
                        buffer.index(indexBuffer[ii * 3 + 1]);
                        buffer.index(indexBuffer[ii * 3 + 2]);
                    }
                }
            }
        }
Exemple #2
0
        //-----------------------------------------------------------------------
        //
        //ORIGINAL LINE: void _latheCapImpl(TriangleBuffer& buffer) const
        private void _latheCapImpl(ref TriangleBuffer buffer)
        {
            std_vector <int>     indexBuffer = new std_vector <int>();
            std_vector <Vector2> pointList   = new std_vector <Vector2>();

            buffer.rebaseOffset();

            Triangulator t              = new Triangulator();
            Shape        shapeCopy      = new Shape();
            MultiShape   multishapeCopy = new MultiShape();

            if (mShapeToExtrude != null)
            {
                //
                //ORIGINAL LINE: shapeCopy = *mShapeToExtrude;
                shapeCopy = (mShapeToExtrude);
                shapeCopy.close();
                t.setShapeToTriangulate(shapeCopy);
            }
            else
            {
                //
                //ORIGINAL LINE: multishapeCopy = *mMultiShapeToExtrude;
                multishapeCopy = (mMultiShapeToExtrude);
                multishapeCopy.close();
                t.setMultiShapeToTriangulate(mMultiShapeToExtrude);
            }
            t.triangulate(indexBuffer, pointList);
            buffer.estimateIndexCount(2 * (uint)indexBuffer.Count);
            buffer.estimateVertexCount(2 * (uint)pointList.Count);

            //begin cap
            buffer.rebaseOffset();
            Quaternion q = new Quaternion();

            q.FromAngleAxis(mAngleBegin, Vector3.UNIT_Y);
            for (int j = 0; j < pointList.size(); j++)
            {
                Vector2 vp2 = pointList[j];
                Vector3 vp  = new Vector3(vp2.x, vp2.y, 0);
                //C++ TO C# CONVERTER WARNING: The following line was determined to be a copy constructor call - this should be verified and a copy constructor should be created if it does not yet exist:
                //ORIGINAL LINE: Vector3 normal = Vector3::UNIT_Z;
                Vector3 normal = (Vector3.UNIT_Z);

                addPoint(ref buffer, q * vp, q * normal, vp2);
            }

            for (int i = 0; i < indexBuffer.size() / 3; i++)
            {
                buffer.index(indexBuffer[i * 3]);
                buffer.index(indexBuffer[i * 3 + 1]);
                buffer.index(indexBuffer[i * 3 + 2]);
            }
            //end cap
            buffer.rebaseOffset();
            q.FromAngleAxis(mAngleEnd, Vector3.UNIT_Y);
            for (int j = 0; j < pointList.size(); j++)
            {
                Vector2 vp2    = pointList[j];
                Vector3 vp     = new Vector3(vp2.x, vp2.y, 0);
                Vector3 normal = -Vector3.UNIT_Z;

                addPoint(ref buffer, q * vp, q * normal, vp2);
            }

            for (int i = 0; i < indexBuffer.size() / 3; i++)
            {
                buffer.index(indexBuffer[i * 3]);
                buffer.index(indexBuffer[i * 3 + 2]);
                buffer.index(indexBuffer[i * 3 + 1]);
            }
        }
Exemple #3
0
        //-----------------------------------------------------------------------

        public static void _retriangulate(ref TriangleBuffer newMesh, TriangleBuffer inputMesh, std_vector <Intersect> intersectionList, bool first)
        {
            std_vector <TriangleBuffer.Vertex> vec = inputMesh.getVertices();
            std_vector <int> ind = inputMesh.getIndices();
            // Triangulate
            //  Group intersections by triangle indice
            std_map <int, std_vector <Segment3D> > meshIntersects = new std_map <int, std_vector <Segment3D> >();

            //for (List<Intersect>.Enumerator it = intersectionList.GetEnumerator(); it.MoveNext(); ++it)
            foreach (var it in intersectionList)
            {
                int it2_find;
                if (first)
                {
                    it2_find = meshIntersects.find(it.mTri1);
                }
                else
                {
                    it2_find = meshIntersects.find(it.mTri2);
                }
                if (it2_find != -1)
                {
                    std_pair <int, std_vector <Segment3D> > it2 = meshIntersects.get((uint)it2_find);
                    it2.second.push_back(it.mSeg);
                }
                else
                {
                    std_vector <Segment3D> vec2 = new std_vector <Segment3D>();
                    vec2.push_back(it.mSeg);
                    if (first)
                    {
                        meshIntersects[it.mTri1] = vec2;
                    }
                    else
                    {
                        meshIntersects[it.mTri2] = vec2;
                    }
                }
            }
            // Build a new TriangleBuffer holding non-intersected triangles and retriangulated-intersected triangles
            //for (List<TriangleBuffer.Vertex>.Enumerator it = vec.GetEnumerator(); it.MoveNext(); ++it)
            foreach (var it in vec)
            {
                newMesh.vertex(it);
            }
            //for (int i = 0; i < (int)ind.Count / 3; i++)
            //    if (meshIntersects.find(i) == meshIntersects.end())
            //        newMesh.triangle(ind[i * 3], ind[i * 3 + 1], ind[i * 3 + 2]);
            for (int i = 0; i < (int)ind.size() / 3; i++)
            {
                if (meshIntersects.find(i) == -1)
                {
                    newMesh.triangle(ind[i * 3], ind[i * 3 + 1], ind[i * 3 + 2]);
                }
            }

            int numNonIntersected1 = newMesh.getIndices().size();

            //for (std.map<int, List<Segment3D> >.Enumerator it = meshIntersects.begin(); it.MoveNext(); ++it)
            foreach (var it in meshIntersects)
            {
                std_vector <Segment3D> segments = it.Value;
                int     triIndex    = it.Key;
                Vector3 v1          = vec[ind[triIndex * 3]].mPosition;
                Vector3 v2          = vec[ind[triIndex * 3 + 1]].mPosition;
                Vector3 v3          = vec[ind[triIndex * 3 + 2]].mPosition;
                Vector3 triNormal   = ((v2 - v1).CrossProduct(v3 - v1)).NormalisedCopy;
                Vector3 xAxis       = triNormal.Perpendicular;
                Vector3 yAxis       = triNormal.CrossProduct(xAxis);
                Vector3 planeOrigin = vec[ind[triIndex * 3]].mPosition;

                // Project intersection segments onto triangle plane
                std_vector <Segment2D> segments2 = new std_vector <Segment2D>();

                //for (List<Segment3D>.Enumerator it2 = segments.GetEnumerator(); it2.MoveNext(); it2++)
                //    segments2.Add(projectOnAxis(it2.Current, planeOrigin, xAxis, yAxis));
                foreach (var it2 in segments)
                {
                    segments2.push_back(projectOnAxis(it2, planeOrigin, xAxis, yAxis));
                }
                //for (List<Segment2D>.Enumerator it2 = segments2.GetEnumerator(); it2.MoveNext();)
                int it2_c = segments2.Count;
                for (int j = it2_c - 1; j >= 0; j--)
                {
                    Segment2D it2 = segments2[j];
                    if ((it2.mA - it2.mB).SquaredLength < 1e-5)
                    {
                        //C++ TO C# CONVERTER TODO TASK: There is no direct equivalent to the STL vector 'erase' method in C#:
                        //it2 = segments2.erase(it2);
                        segments2.RemoveAt(j);
                    }
                    //else
                }
                // Triangulate
                Triangulator t = new Triangulator();
                //Triangle2D[[]] tri = new Triangle2D[ind[triIndex * 3]](projectOnAxis(vec.mPosition, planeOrigin, xAxis, yAxis), projectOnAxis(vec[ind[triIndex * 3 + 1]].mPosition, planeOrigin, xAxis, yAxis), projectOnAxis(vec[ind[triIndex * 3 + 2]].mPosition, planeOrigin, xAxis, yAxis));
                Triangle2D tri = new Triangle2D(projectOnAxis(vec[ind[triIndex * 3]].mPosition, planeOrigin, xAxis, yAxis),
                                                projectOnAxis(vec[ind[triIndex * 3 + 1]].mPosition, planeOrigin, xAxis, yAxis),
                                                projectOnAxis(vec[ind[triIndex * 3 + 2]].mPosition, planeOrigin, xAxis, yAxis));
                std_vector <Vector2> outPointList = new std_vector <Vector2>();//PointList outPointList;
                std_vector <int>     outIndice    = new std_vector <int>();
                t.setManualSuperTriangle(tri).setRemoveOutside(false).setSegmentListToTriangulate(ref segments2).triangulate(outIndice, outPointList);

                // Deproject and add to triangleBuffer
                newMesh.rebaseOffset();
                //for (List<int>.Enumerator it = outIndice.GetEnumerator(); it.MoveNext(); ++it)
                //    newMesh.index(it.Current);
                foreach (var oindex in outIndice)
                {
                    newMesh.index(oindex);
                }
                float   x1  = tri.mPoints[0].x;
                float   y1  = tri.mPoints[0].y;
                Vector2 uv1 = vec[ind[triIndex * 3]].mUV;
                float   x2  = tri.mPoints[1].x;
                float   y2  = tri.mPoints[1].y;
                Vector2 uv2 = vec[ind[triIndex * 3 + 1]].mUV;
                float   x3  = tri.mPoints[2].x;
                float   y3  = tri.mPoints[2].y;
                Vector2 uv3 = vec[ind[triIndex * 3 + 2]].mUV;
                float   DET = x1 * y2 - x2 * y1 + x2 * y3 - x3 * y2 + x3 * y1 - x1 * y3;
                Vector2 A   = ((y2 - y3) * uv1 + (y3 - y1) * uv2 + (y1 - y2) * uv3) / DET;
                Vector2 B   = ((x3 - x2) * uv1 + (x1 - x3) * uv2 + (x2 - x1) * uv3) / DET;
                Vector2 C   = ((x2 * y3 - x3 * y2) * uv1 + (x3 * y1 - x1 * y3) * uv2 + (x1 * y2 - x2 * y1) * uv3) / DET;

                //for (List<Vector2>.Enumerator it = outPointList.GetEnumerator(); it.MoveNext(); ++it)
                foreach (var it2 in outPointList)
                {
                    Vector2 uv = A * it2.x + B * it2.y + C;
                    newMesh.position(deprojectOnAxis(it2, planeOrigin, xAxis, yAxis));
                    newMesh.normal(triNormal);
                    newMesh.textureCoord(uv);
                }
            }
        }