Exemple #1
0
        private void ChildSetGeom(OdePrim odePrim)
        {
            //if (m_isphysical && Body != IntPtr.Zero)
            lock (childrenPrim)
            {
                foreach (OdePrim prm in childrenPrim)
                {
                    //prm.childPrim = true;
                    prm.disableBody();
                    //prm.m_taintparent = null;
                    //prm._parent = null;
                    //prm.m_taintPhysics = false;
                    //prm.m_disabled = true;
                    //prm.childPrim = false;
                }
            }
            disableBody();

            if (Body != IntPtr.Zero)
            {
                _parent_scene.remActivePrim(this);
            }

            lock (childrenPrim)
            {
                foreach (OdePrim prm in childrenPrim)
                {
                    ParentPrim(prm);
                }
            }
        }
Exemple #2
0
        private float CalculateMass()
        {
            float volume = 0;

            // No material is passed to the physics engines yet..  soo..
            // we're using the m_density constant in the class definition

            float returnMass = 0;

            switch (_pbs.ProfileShape)
            {
                case ProfileShape.Square:
                    // Profile Volume

                    volume = _size.X*_size.Y*_size.Z;

                    // If the user has 'hollowed out'
                    // ProfileHollow is one of those 0 to 50000 values :P
                    // we like percentages better..   so turning into a percentage

                    if (((float) _pbs.ProfileHollow/50000f) > 0.0)
                    {
                        float hollowAmount = (float) _pbs.ProfileHollow/50000f;

                        // calculate the hollow volume by it's shape compared to the prim shape
                        float hollowVolume = 0;
                        switch (_pbs.HollowShape)
                        {
                            case HollowShape.Square:
                            case HollowShape.Same:
                                // Cube Hollow volume calculation
                                float hollowsizex = _size.X*hollowAmount;
                                float hollowsizey = _size.Y*hollowAmount;
                                float hollowsizez = _size.Z*hollowAmount;
                                hollowVolume = hollowsizex*hollowsizey*hollowsizez;
                                break;

                            case HollowShape.Circle:
                                // Hollow shape is a perfect cyllinder in respect to the cube's scale
                                // Cyllinder hollow volume calculation
                                float hRadius = _size.X/2;
                                float hLength = _size.Z;

                                // pi * r2 * h
                                hollowVolume = ((float) (Math.PI*Math.Pow(hRadius, 2)*hLength)*hollowAmount);
                                break;

                            case HollowShape.Triangle:
                                // Equilateral Triangular Prism volume hollow calculation
                                // Triangle is an Equilateral Triangular Prism with aLength = to _size.Y

                                float aLength = _size.Y;
                                // 1/2 abh
                                hollowVolume = (float) ((0.5*aLength*_size.X*_size.Z)*hollowAmount);
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                        }
                        volume = volume - hollowVolume;
                    }

                    break;
                case ProfileShape.Circle:
                    if (_pbs.PathCurve == (byte)Extrusion.Straight)
                    {
                        // Cylinder
                        float volume1 = (float)(Math.PI * Math.Pow(_size.X/2, 2) * _size.Z);
                        float volume2 = (float)(Math.PI * Math.Pow(_size.Y/2, 2) * _size.Z);

                        // Approximating the cylinder's irregularity.
                        if (volume1 > volume2)
                        {
                            volume = (float)volume1 - (volume1 - volume2);
                        }
                        else if (volume2 > volume1)
                        {
                            volume = (float)volume2 - (volume2 - volume1);
                        }
                        else
                        {
                            // Regular cylinder
                            volume = volume1;
                        }
                    }
                    else
                    {
                        // We don't know what the shape is yet, so use default
                        volume = _size.X * _size.Y * _size.Z;
                    }
                    // If the user has 'hollowed out'
                    // ProfileHollow is one of those 0 to 50000 values :P
                    // we like percentages better..   so turning into a percentage

                    if (((float)_pbs.ProfileHollow / 50000f) > 0.0)
                    {
                        float hollowAmount = (float)_pbs.ProfileHollow / 50000f;

                        // calculate the hollow volume by it's shape compared to the prim shape
                        float hollowVolume = 0;
                        switch (_pbs.HollowShape)
                        {
                            case HollowShape.Same:
                            case HollowShape.Circle:
                                // Hollow shape is a perfect cyllinder in respect to the cube's scale
                                // Cyllinder hollow volume calculation
                                float hRadius = _size.X / 2;
                                float hLength = _size.Z;

                                // pi * r2 * h
                                hollowVolume = ((float)(Math.PI * Math.Pow(hRadius, 2) * hLength) * hollowAmount);
                                break;

                            case HollowShape.Square:
                                // Cube Hollow volume calculation
                                float hollowsizex = _size.X * hollowAmount;
                                float hollowsizey = _size.Y * hollowAmount;
                                float hollowsizez = _size.Z * hollowAmount;
                                hollowVolume = hollowsizex * hollowsizey * hollowsizez;
                                break;

                            case HollowShape.Triangle:
                                // Equilateral Triangular Prism volume hollow calculation
                                // Triangle is an Equilateral Triangular Prism with aLength = to _size.Y

                                float aLength = _size.Y;
                                // 1/2 abh
                                hollowVolume = (float)((0.5 * aLength * _size.X * _size.Z) * hollowAmount);
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                        }
                        volume = volume - hollowVolume;
                    }
                    break;

                case ProfileShape.HalfCircle:
                    if (_pbs.PathCurve == (byte)Extrusion.Curve1)
                    {
                        if (_size.X == _size.Z && _size.Z == _size.X)
                        {
                            // regular sphere
                            // v = 4/3 * pi * r^3
                            float sradius3 = (float)Math.Pow((_size.X / 2), 3);
                            volume = (float)((4 / 3) * Math.PI * sradius3);
                        }
                        else
                        {
                            // we treat this as a box currently
                            volume = _size.X * _size.Y * _size.Z;
                        }
                    }
                    else
                    {
                        // We don't know what the shape is yet, so use default
                        volume = _size.X * _size.Y * _size.Z;
                    }
                    break;

                case ProfileShape.EquilateralTriangle:
                    /*
                        v = (abs((xB*yA-xA*yB)+(xC*yB-xB*yC)+(xA*yC-xC*yA))/2) * h

                        // seed mesh
                        Vertex MM = new Vertex(-0.25f, -0.45f, 0.0f);
                        Vertex PM = new Vertex(+0.5f, 0f, 0.0f);
                        Vertex PP = new Vertex(-0.25f, +0.45f, 0.0f);
                     */
                    float xA = -0.25f * _size.X;
                    float yA = -0.45f * _size.Y;

                    float xB = 0.5f * _size.X;
                    float yB = 0;

                    float xC = -0.25f * _size.X;
                    float yC = 0.45f * _size.Y;

                    volume = (float)((Math.Abs((xB * yA - xA * yB) + (xC * yB - xB * yC) + (xA * yC - xC * yA)) / 2) * _size.Z);

                    // If the user has 'hollowed out'
                    // ProfileHollow is one of those 0 to 50000 values :P
                    // we like percentages better..   so turning into a percentage
                    float fhollowFactor = ((float)_pbs.ProfileHollow / 1.9f);
                    if (((float)fhollowFactor / 50000f) > 0.0)
                    {
                        float hollowAmount = (float)fhollowFactor / 50000f;

                        // calculate the hollow volume by it's shape compared to the prim shape
                        float hollowVolume = 0;
                        switch (_pbs.HollowShape)
                        {
                            case HollowShape.Same:
                            case HollowShape.Triangle:
                                // Equilateral Triangular Prism volume hollow calculation
                                // Triangle is an Equilateral Triangular Prism with aLength = to _size.Y

                                float aLength = _size.Y;
                                // 1/2 abh
                                hollowVolume = (float)((0.5 * aLength * _size.X * _size.Z) * hollowAmount);
                                break;

                            case HollowShape.Square:
                                // Cube Hollow volume calculation
                                float hollowsizex = _size.X * hollowAmount;
                                float hollowsizey = _size.Y * hollowAmount;
                                float hollowsizez = _size.Z * hollowAmount;
                                hollowVolume = hollowsizex * hollowsizey * hollowsizez;
                                break;

                            case HollowShape.Circle:
                                // Hollow shape is a perfect cyllinder in respect to the cube's scale
                                // Cyllinder hollow volume calculation
                                float hRadius = _size.X / 2;
                                float hLength = _size.Z;

                                // pi * r2 * h
                                hollowVolume = ((float)((Math.PI * Math.Pow(hRadius, 2) * hLength)/2) * hollowAmount);
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                        }
                        volume = volume - hollowVolume;
                    }
                    break;

                default:
                    // we don't have all of the volume formulas yet so
                    // use the common volume formula for all
                    volume = _size.X*_size.Y*_size.Z;
                    break;
            }

            // Calculate Path cut effect on volume
            // Not exact, in the triangle hollow example
            // They should never be zero or less then zero..
            // we'll ignore it if it's less then zero

            // ProfileEnd and ProfileBegin are values
            // from 0 to 50000

            // Turning them back into percentages so that I can cut that percentage off the volume

            float PathCutEndAmount = _pbs.ProfileEnd;
            float PathCutStartAmount = _pbs.ProfileBegin;
            if (((PathCutStartAmount + PathCutEndAmount)/50000f) > 0.0f)
            {
                float pathCutAmount = ((PathCutStartAmount + PathCutEndAmount)/50000f);

                // Check the return amount for sanity
                if (pathCutAmount >= 0.99f)
                    pathCutAmount = 0.99f;

                volume = volume - (volume*pathCutAmount);
            }
            UInt16 taperX = _pbs.PathScaleX;
            UInt16 taperY = _pbs.PathScaleY;
            float taperFactorX = 0;
            float taperFactorY = 0;

            // Mass = density * volume
            if (taperX != 100)
            {
                if (taperX > 100)
                {
                    taperFactorX = 1.0f - ((float)taperX / 200);
                    //m_log.Warn("taperTopFactorX: " + extr.taperTopFactorX.ToString());
                }
                else
                {
                    taperFactorX = 1.0f - ((100 - (float)taperX) / 100);
                    //m_log.Warn("taperBotFactorX: " + extr.taperBotFactorX.ToString());
                }
                volume = (float)volume * ((taperFactorX / 3f) + 0.001f);
            }

            if (taperY != 100)
            {
                if (taperY > 100)
                {
                    taperFactorY = 1.0f - ((float)taperY / 200);
                    //m_log.Warn("taperTopFactorY: " + extr.taperTopFactorY.ToString());
                }
                else
                {
                    taperFactorY = 1.0f - ((100 - (float)taperY) / 100);
                    //m_log.Warn("taperBotFactorY: " + extr.taperBotFactorY.ToString());
                }
                volume = (float)volume * ((taperFactorY / 3f) + 0.001f);
            }
            returnMass = m_density*volume;
            if (returnMass <= 0) returnMass = 0.0001f;//ckrinke: Mass must be greater then zero.

            // Recursively calculate mass
            bool HasChildPrim = false;
            lock (childrenPrim)
            {
                if (childrenPrim.Count > 0)
                {
                    HasChildPrim = true;
                }

            }
            if (HasChildPrim)
            {
                OdePrim[] childPrimArr = new OdePrim[0];

                lock (childrenPrim)
                    childPrimArr = childrenPrim.ToArray();

                for (int i = 0; i < childPrimArr.Length; i++)
                {
                    if (childPrimArr[i] != null && !childPrimArr[i].m_taintremove)
                        returnMass += childPrimArr[i].CalculateMass();
                    // failsafe, this shouldn't happen but with OpenSim, you never know :)
                    if (i > 256)
                        break;
                }
            }

            return returnMass;
        }
Exemple #3
0
        private void ChildDelink(OdePrim odePrim)
        {
            // Okay, we have a delinked child..   need to rebuild the body.
            lock (childrenPrim)
            {
                foreach (OdePrim prm in childrenPrim)
                {
                    prm.childPrim = true;
                    prm.disableBody();
                    //prm.m_taintparent = null;
                    //prm._parent = null;
                    //prm.m_taintPhysics = false;
                    //prm.m_disabled = true;
                    //prm.childPrim = false;
                }
            }
            disableBody();

            lock (childrenPrim)
            {
                childrenPrim.Remove(odePrim);
            }

            if (Body != IntPtr.Zero)
            {
                _parent_scene.remActivePrim(this);
            }

            lock (childrenPrim)
            {
                foreach (OdePrim prm in childrenPrim)
                {
                    ParentPrim(prm);
                }
            }
        }
Exemple #4
0
        // I'm the parent
        // prim is the child
        public void ParentPrim(OdePrim prim)
        {
            if (this.m_localID != prim.m_localID)
            {
                if (Body == IntPtr.Zero)
                {
                    Body = d.BodyCreate(_parent_scene.world);
                    setMass();
                }
                if (Body != IntPtr.Zero)
                {
                    lock (childrenPrim)
                    {
                        if (!childrenPrim.Contains(prim))
                        {
                            childrenPrim.Add(prim);

                            foreach (OdePrim prm in childrenPrim)
                            {
                                d.Mass m2;
                                d.MassSetZero(out m2);
                                d.MassSetBoxTotal(out m2, prim.CalculateMass(), prm._size.X, prm._size.Y, prm._size.Z);

                                d.Quaternion quat = new d.Quaternion();
                                quat.W = prm._orientation.W;
                                quat.X = prm._orientation.X;
                                quat.Y = prm._orientation.Y;
                                quat.Z = prm._orientation.Z;

                                d.Matrix3 mat = new d.Matrix3();
                                d.RfromQ(out mat, ref quat);
                                d.MassRotate(ref m2, ref mat);
                                d.MassTranslate(ref m2, Position.X - prm.Position.X, Position.Y - prm.Position.Y, Position.Z - prm.Position.Z);
                                d.MassAdd(ref pMass, ref m2);
                            }
                            foreach (OdePrim prm in childrenPrim)
                            {
                                prm.m_collisionCategories |= CollisionCategories.Body;
                                prm.m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);

                                if (prm.prim_geom == IntPtr.Zero)
                                {
                                    m_log.Warn("[PHYSICS]: Unable to link one of the linkset elements.  No geom yet");
                                    continue;
                                }

                                d.GeomSetCategoryBits(prm.prim_geom, (int)prm.m_collisionCategories);
                                d.GeomSetCollideBits(prm.prim_geom, (int)prm.m_collisionFlags);

                                d.Quaternion quat = new d.Quaternion();
                                quat.W = prm._orientation.W;
                                quat.X = prm._orientation.X;
                                quat.Y = prm._orientation.Y;
                                quat.Z = prm._orientation.Z;

                                d.Matrix3 mat = new d.Matrix3();
                                d.RfromQ(out mat, ref quat);
                                if (Body != IntPtr.Zero)
                                {
                                    d.GeomSetBody(prm.prim_geom, Body);
                                    prm.childPrim = true;
                                    d.GeomSetOffsetWorldPosition(prm.prim_geom, prm.Position.X , prm.Position.Y, prm.Position.Z);
                                    //d.GeomSetOffsetPosition(prim.prim_geom,
                                    //    (Position.X - prm.Position.X) - pMass.c.X,
                                    //    (Position.Y - prm.Position.Y) - pMass.c.Y,
                                    //    (Position.Z - prm.Position.Z) - pMass.c.Z);
                                    d.GeomSetOffsetWorldRotation(prm.prim_geom, ref mat);
                                    //d.GeomSetOffsetRotation(prm.prim_geom, ref mat);
                                    d.MassTranslate(ref pMass, -pMass.c.X, -pMass.c.Y, -pMass.c.Z);
                                    d.BodySetMass(Body, ref pMass);
                                }
                                else
                                {
                                    m_log.Debug("[PHYSICS]:I ain't got no boooooooooddy, no body");
                                }

                                prm.m_interpenetrationcount = 0;
                                prm.m_collisionscore = 0;
                                prm.m_disabled = false;

                                // The body doesn't already have a finite rotation mode set here
                                if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0)) && _parent == null)
                                {
                                    prm.createAMotor(m_angularlock);
                                }
                                prm.Body = Body;
                                _parent_scene.addActivePrim(prm);
                            }

                            m_collisionCategories |= CollisionCategories.Body;
                            m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);

                            d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
                            d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);

                            d.Quaternion quat2 = new d.Quaternion();
                            quat2.W = _orientation.W;
                            quat2.X = _orientation.X;
                            quat2.Y = _orientation.Y;
                            quat2.Z = _orientation.Z;

                            d.Matrix3 mat2 = new d.Matrix3();
                            d.RfromQ(out mat2, ref quat2);
                            d.GeomSetBody(prim_geom, Body);
                            d.GeomSetOffsetWorldPosition(prim_geom, Position.X - pMass.c.X, Position.Y - pMass.c.Y, Position.Z - pMass.c.Z);
                            //d.GeomSetOffsetPosition(prim.prim_geom,
                            //    (Position.X - prm.Position.X) - pMass.c.X,
                            //    (Position.Y - prm.Position.Y) - pMass.c.Y,
                            //    (Position.Z - prm.Position.Z) - pMass.c.Z);
                            //d.GeomSetOffsetRotation(prim_geom, ref mat2);
                            d.MassTranslate(ref pMass, -pMass.c.X, -pMass.c.Y, -pMass.c.Z);
                            d.BodySetMass(Body, ref pMass);

                            d.BodySetAutoDisableFlag(Body, true);
                            d.BodySetAutoDisableSteps(Body, body_autodisable_frames);

                            m_interpenetrationcount = 0;
                            m_collisionscore = 0;
                            m_disabled = false;

                            // The body doesn't already have a finite rotation mode set here
                            if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0)) && _parent == null)
                            {
                                createAMotor(m_angularlock);
                            }
                            d.BodySetPosition(Body, Position.X, Position.Y, Position.Z);

                            _parent_scene.addActivePrim(this);
                        }
                    }
                }
            }
        }