Exemple #1
0
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string datasetFile            = string.Empty;
            string trainedModelFile       = string.Empty;
            string predictionsFile        = string.Empty;
            int    maxRelatedUserCount    = 5;
            int    minCommonRatingCount   = 5;
            int    minRelatedUserPoolSize = 5;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--data", "FILE", "Dataset to make predictions for", v => datasetFile            = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--model", "FILE", "File with trained model", v => trainedModelFile              = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--predictions", "FILE", "File with generated predictions", v => predictionsFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--max-users", "NUM", "Maximum number of related users for a single user; defaults to 5", v => maxRelatedUserCount = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--min-common-items", "NUM", "Minimum number of items that the query user and the related user should have rated in common; defaults to 5", v => minCommonRatingCount = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--min-pool-size", "NUM", "Minimum size of the related user pool for a single user; defaults to 5", v => minRelatedUserPoolSize = v, CommandLineParameterType.Optional);
            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            RecommenderDataset testDataset = RecommenderDataset.Load(datasetFile);

            var trainedModel = MatchboxRecommender.Load <RecommenderDataset, User, Item, DummyFeatureSource>(trainedModelFile);
            var evaluator    = new RecommenderEvaluator <RecommenderDataset, User, Item, int, int, Discrete>(
                Mappings.StarRatingRecommender.ForEvaluation());
            IDictionary <User, IEnumerable <User> > relatedUsers = evaluator.FindRelatedUsersWhoRatedSameItems(
                trainedModel, testDataset, maxRelatedUserCount, minCommonRatingCount, minRelatedUserPoolSize);

            RecommenderPersistenceUtils.SaveRelatedUsers(predictionsFile, relatedUsers);

            return(true);
        }
Exemple #2
0
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string testDatasetFile = string.Empty;
            string predictionsFile = string.Empty;
            string reportFile      = string.Empty;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--test-data", "FILE", "Test dataset used to obtain ground truth", v => testDatasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--predictions", "FILE", "Predictions to evaluate", v => predictionsFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--report", "FILE", "Evaluation report file", v => reportFile            = v, CommandLineParameterType.Required);
            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            RecommenderDataset testDataset = RecommenderDataset.Load(testDatasetFile);
            IDictionary <User, IDictionary <Item, int> > ratingPredictions = RecommenderPersistenceUtils.LoadPredictedRatings(predictionsFile);

            var evaluatorMapping = Mappings.StarRatingRecommender.ForEvaluation();
            var evaluator        = new StarRatingRecommenderEvaluator <RecommenderDataset, User, Item, int>(evaluatorMapping);

            using (var writer = new StreamWriter(reportFile))
            {
                writer.WriteLine(
                    "Mean absolute error: {0:0.000}",
                    evaluator.RatingPredictionMetric(testDataset, ratingPredictions, Metrics.AbsoluteError));
                writer.WriteLine(
                    "Root mean squared error: {0:0.000}",
                    Math.Sqrt(evaluator.RatingPredictionMetric(testDataset, ratingPredictions, Metrics.SquaredError)));
            }

            return(true);
        }
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string inputDatasetFile  = string.Empty;
            string outputDatasetFile = string.Empty;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--input-data", "FILE", "Input dataset, treated as if all the ratings are positive", v => inputDatasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--output-data", "FILE", "Output dataset with both posisitve and negative data", v => outputDatasetFile    = v, CommandLineParameterType.Required);

            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            var generatorMapping = Mappings.StarRatingRecommender.WithGeneratedNegativeData();

            var inputDataset  = RecommenderDataset.Load(inputDatasetFile);
            var outputDataset = new RecommenderDataset(
                generatorMapping.GetInstances(inputDataset).Select(i => new RatedUserItem(i.User, i.Item, i.Rating)),
                generatorMapping.GetRatingInfo(inputDataset));

            outputDataset.Save(outputDatasetFile);

            return(true);
        }
Exemple #4
0
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string inputDatasetFile               = string.Empty;
            string outputTrainingDatasetFile      = string.Empty;
            string outputTestDatasetFile          = string.Empty;
            double trainingOnlyUserFraction       = 0.5;
            double testUserRatingTrainingFraction = 0.25;
            double coldUserFraction               = 0;
            double coldItemFraction               = 0;
            double ignoredUserFraction            = 0;
            double ignoredItemFraction            = 0;
            bool   removeOccasionalColdItems      = false;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--input-data", "FILE", "Dataset to split", v => inputDatasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--output-data-train", "FILE", "Training part of the split dataset", v => outputTrainingDatasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--output-data-test", "FILE", "Test part of the split dataset", v => outputTestDatasetFile          = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--training-users", "NUM", "Fraction of training-only users; defaults to 0.5", (double v) => trainingOnlyUserFraction = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--test-user-training-ratings", "NUM", "Fraction of test user ratings for training; defaults to 0.25", (double v) => testUserRatingTrainingFraction = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--cold-users", "NUM", "Fraction of cold (test-only) users; defaults to 0", (double v) => coldUserFraction   = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--cold-items", "NUM", "Fraction of cold (test-only) items; defaults to 0", (double v) => coldItemFraction   = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--ignored-users", "NUM", "Fraction of ignored users; defaults to 0", (double v) => ignoredUserFraction      = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--ignored-items", "NUM", "Fraction of ignored items; defaults to 0", (double v) => ignoredItemFraction      = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--remove-occasional-cold-items", "Remove occasionally produced cold items", () => removeOccasionalColdItems = true);

            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            var splittingMapping = Mappings.StarRatingRecommender.SplitToTrainTest(
                trainingOnlyUserFraction,
                testUserRatingTrainingFraction,
                coldUserFraction,
                coldItemFraction,
                ignoredUserFraction,
                ignoredItemFraction,
                removeOccasionalColdItems);

            var inputDataset          = RecommenderDataset.Load(inputDatasetFile);
            var outputTrainingDataset = new RecommenderDataset(
                splittingMapping.GetInstances(SplitInstanceSource.Training(inputDataset)),
                inputDataset.StarRatingInfo);

            outputTrainingDataset.Save(outputTrainingDatasetFile);
            var outputTestDataset = new RecommenderDataset(
                splittingMapping.GetInstances(SplitInstanceSource.Test(inputDataset)),
                inputDataset.StarRatingInfo);

            outputTestDataset.Save(outputTestDatasetFile);

            return(true);
        }
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string datasetFile = string.Empty;
            string trainedModelFile = string.Empty;
            string predictionsFile = string.Empty;
            
            var parser = new CommandLineParser();
            parser.RegisterParameterHandler("--data", "FILE", "Dataset to make predictions for", v => datasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--model", "FILE", "File with trained model", v => trainedModelFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--predictions", "FILE", "File with generated predictions", v => predictionsFile = v, CommandLineParameterType.Required);
            if (!parser.TryParse(args, usagePrefix))
            {
                return false;
            }

            RecommenderDataset testDataset = RecommenderDataset.Load(datasetFile);
            
            var trainedModel = MatchboxRecommender.Load<RecommenderDataset, User, Item, DummyFeatureSource>(trainedModelFile);
            IDictionary<User, IDictionary<Item, int>> predictions = trainedModel.Predict(testDataset);
            RecommenderPersistenceUtils.SavePredictedRatings(predictionsFile, predictions);

            return true;
        }
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string testDatasetFile = string.Empty;
            string predictionsFile = string.Empty;
            string reportFile      = string.Empty;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--test-data", "FILE", "Test dataset used to obtain ground truth", v => testDatasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--predictions", "FILE", "Predictions to evaluate", v => predictionsFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--report", "FILE", "Evaluation report file", v => reportFile            = v, CommandLineParameterType.Required);
            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            RecommenderDataset testDataset = RecommenderDataset.Load(testDatasetFile);
            int minRating = Mappings.StarRatingRecommender.GetRatingInfo(testDataset).MinStarRating;

            IDictionary <User, IEnumerable <Item> > recommendedItems = RecommenderPersistenceUtils.LoadRecommendedItems(predictionsFile);

            var evaluatorMapping = Mappings.StarRatingRecommender.ForEvaluation();
            var evaluator        = new StarRatingRecommenderEvaluator <RecommenderDataset, User, Item, int>(evaluatorMapping);

            using (var writer = new StreamWriter(reportFile))
            {
                writer.WriteLine(
                    "NDCG: {0:0.000}",
                    evaluator.ItemRecommendationMetric(
                        testDataset,
                        recommendedItems,
                        Metrics.Ndcg,
                        rating => Convert.ToDouble(rating) - minRating + 1));
            }

            return(true);
        }
Exemple #7
0
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string testDatasetFile      = string.Empty;
            string predictionsFile      = string.Empty;
            string reportFile           = string.Empty;
            int    minCommonRatingCount = 5;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--test-data", "FILE", "Test dataset used to obtain ground truth", v => testDatasetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--predictions", "FILE", "Predictions to evaluate", v => predictionsFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--report", "FILE", "Evaluation report file", v => reportFile            = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--min-common-items", "NUM", "Minimum number of users that the query item and the related item should have been rated by in common; defaults to 5", v => minCommonRatingCount = v, CommandLineParameterType.Optional);
            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            RecommenderDataset testDataset = RecommenderDataset.Load(testDatasetFile);
            IDictionary <Item, IEnumerable <Item> > relatedItems = RecommenderPersistenceUtils.LoadRelatedItems(predictionsFile);

            var evaluatorMapping = Mappings.StarRatingRecommender.ForEvaluation();
            var evaluator        = new StarRatingRecommenderEvaluator <RecommenderDataset, User, Item, int>(evaluatorMapping);

            using (var writer = new StreamWriter(reportFile))
            {
                writer.WriteLine(
                    "L1 Sim NDCG: {0:0.000}",
                    evaluator.RelatedItemsMetric(testDataset, relatedItems, minCommonRatingCount, Metrics.Ndcg, Metrics.NormalizedManhattanSimilarity));
                writer.WriteLine(
                    "L2 Sim NDCG: {0:0.000}",
                    evaluator.RelatedItemsMetric(testDataset, relatedItems, minCommonRatingCount, Metrics.Ndcg, Metrics.NormalizedEuclideanSimilarity));
            }

            return(true);
        }