Exemple #1
0
 /// <summary>
 /// Gets the average row of a parameter matrix excluding the feature contribution.
 /// </summary>
 /// <param name="entityParameterVectors">
 /// The matrix of parameters.
 /// Each row of the matrix is expected to be the parameter vector of a given user or item.
 /// </param>
 /// <param name="weights">The feature weights.</param>
 /// <param name="features">The feature values.</param>
 /// <returns>The average user/item parameter vector excluding the feature contribution.</returns>
 private static GaussianArray GetAverageParameterVectorExcludingFeatureContribution(
     GaussianMatrix entityParameterVectors, GaussianMatrix weights, SparseFeatureMatrix features)
 {
     Debug.Assert(entityParameterVectors.Count > 0, "The number of entities must be positive.");
     return(new GaussianArray(
                entityParameterVectors[0].Count,
                i => GetAverageParameterExcludingFeatureContribution(entityParameterVectors.Select(x => x[i]), weights[i], features)));
 }
Exemple #2
0
        /// <summary>
        /// Computes the average parameter of an array of user/item parameters
        /// excluding the feature contribution for the users or items.
        /// </summary>
        /// <param name="entityParameters">The array of user/item parameters to get the average of.</param>
        /// <param name="weights">The feature weights of each user/item.</param>
        /// <param name="features">The feature values of each user/item.</param>
        /// <returns>The average parameter distribution excluding feature contributions.</returns>
        private static Gaussian GetAverageParameterExcludingFeatureContribution(
            IEnumerable <Gaussian> entityParameters,
            IList <Gaussian> weights,
            SparseFeatureMatrix features)
        {
            var adjustedEntityParameters = entityParameters.Select((gaussian, i) =>
                                                                   DoublePlusOp.AAverageConditional(gaussian, ComputeFeatureContribution(weights, features.NonZeroFeatureValues[i], features.NonZeroFeatureIndices[i])));

            return(GetAverageParameter(adjustedEntityParameters));
        }
Exemple #3
0
        /// <summary>
        /// Gets the parameter distributions of the average item.
        /// </summary>
        /// <param name="parameterDistributions">The learned posterior parameter distributions.</param>
        /// <param name="itemFeatures">The item features.</param>
        /// <returns>The average item parameter distributions.</returns>
        public static ItemParameterDistribution GetAverageItemParameters(
            ParameterDistributions parameterDistributions, SparseFeatureMatrix itemFeatures)
        {
            GaussianArray traitDistribution;
            Gaussian      biasDistribution;

            GetAverageTraitsAndBiases(
                parameterDistributions.ItemTraitDistribution,
                parameterDistributions.ItemBiasDistribution,
                parameterDistributions.ItemFeature.TraitWeights,
                parameterDistributions.ItemFeature.BiasWeights,
                itemFeatures,
                out traitDistribution,
                out biasDistribution);

            return(new ItemParameterDistribution(traitDistribution, biasDistribution));
        }
Exemple #4
0
        /// <summary>
        /// Gets the parameter distributions of the average user.
        /// </summary>
        /// <param name="parameterDistributions">The learned posterior parameter distributions.</param>
        /// <param name="userFeatures">The user features.</param>
        /// <returns>The average user parameter distributions.</returns>
        public static UserParameterDistribution GetAverageUserParameters(
            ParameterDistributions parameterDistributions, SparseFeatureMatrix userFeatures)
        {
            GaussianArray traitDistribution;
            Gaussian      biasDistribution;
            GaussianArray thresholdDistribution = GetAverageParameterVector(parameterDistributions.UserThresholdDistribution);

            GetAverageTraitsAndBiases(
                parameterDistributions.UserTraitDistribution,
                parameterDistributions.UserBiasDistribution,
                parameterDistributions.UserFeature.TraitWeights,
                parameterDistributions.UserFeature.BiasWeights,
                userFeatures,
                out traitDistribution,
                out biasDistribution);

            return(new UserParameterDistribution(traitDistribution, biasDistribution, thresholdDistribution));
        }
Exemple #5
0
 /// <summary>
 /// Gets the average traits and biases amongst all users or items.
 /// </summary>
 /// <param name="traits">The user/item traits.</param>
 /// <param name="biases">The user/item biases.</param>
 /// <param name="traitFeatureWeights">The feature weights for the traits.</param>
 /// <param name="biasFeatureWeights">The feature weights for the biases.</param>
 /// <param name="featureValues">The feature values of all users/items.</param>
 /// <param name="averageTraits">The resulting average traits.</param>
 /// <param name="averageBias">The resulting average bias.</param>
 /// <remarks>
 /// When features are used, this method will exclude the feature contribution when computing the average.
 /// Therefore, the feature contribution for a given user/item has to be then added at prediction time.
 /// </remarks>
 private static void GetAverageTraitsAndBiases(
     GaussianMatrix traits,
     GaussianArray biases,
     GaussianMatrix traitFeatureWeights,
     GaussianArray biasFeatureWeights,
     SparseFeatureMatrix featureValues,
     out GaussianArray averageTraits,
     out Gaussian averageBias)
 {
     if (featureValues.FeatureCount == 0)
     {
         averageTraits = GetAverageParameterVector(traits);
         averageBias   = GetAverageParameter(biases);
     }
     else
     {
         averageTraits = GetAverageParameterVectorExcludingFeatureContribution(traits, traitFeatureWeights, featureValues);
         averageBias   = GetAverageParameterExcludingFeatureContribution(biases, biasFeatureWeights, featureValues);
     }
 }