Exemple #1
0
        private void run()
        {
            FPA t1 = PA.Add(PA.InnerProduct(dinput, diwt), theta);             // summation and theta

            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t1)), 1.0f)); //applying sigmoid function

            FPA t2 = PA.Add(PA.InnerProduct(ohidden, dowt), tau);              // summation and tau

            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t2)), 1.0f));

            FPA oerror = PA.Subtract(doutput, ooutput);                                                                     //numpat no

            FPA herror = PA.Transpose(PA.InnerProduct(dowt, PA.Transpose(oerror, new int[] { 1, 0 })), new int[] { 1, 0 }); // doubtful transpose

            herror = PA.Multiply(PA.Multiply(PA.Subtract(1.0f, t1), t1), herror);

            FPA _owt = PA.Add(dowt, PA.Multiply(PA.InnerProduct(PA.Transpose(t1, new int[] { 1, 0 }), oerror), betao)); // orig no transpose


            FPA _iwt = PA.Multiply(PA.InnerProduct(PA.Transpose(dinput, new int[] { 1, 0 }), herror), betah); //original dinput herror and no transpose

            dtau = PA.Add(PA.Multiply(betao, oerror), dtau);

            dtheta = PA.Add(PA.Multiply(betah, herror), dtheta); //orig oerror

            PA.ToArray(_owt, out owt);
            PA.ToArray(_iwt, out iwt);

            cleanup();
            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);
        }
Exemple #2
0
        public FPA LearningRate(FPA t)              //Epsilon(t)
        {
            FPA exponent = -t / m_Theta;
            FPA Epsilont = m_EpsilonInitial * PA.Pow2(PA.Log2(LogBase) * exponent);

            return(Epsilont);
        }
Exemple #3
0
        private void run()
        {
            FPA t1 = PA.Add(PA.InnerProduct(dinput, diwt), theta);

            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t1)), 1.0f));

            FPA t2 = PA.Add(PA.InnerProduct(ohidden, dowt), tau);

            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t2)), 1.0f));

            FPA oerror = PA.Subtract(doutput, ooutput);



            FPA herror = PA.InnerProduct(dowt, PA.Transpose(oerror, new int[] { 1, 0 }));

            herror = PA.InnerProduct(PA.Multiply(PA.Subtract(1.0f, t1), t1), herror);

            FPA _owt = PA.Add(dowt, PA.Multiply(PA.InnerProduct(t1, oerror), betao));

            FPA _iwt = PA.Multiply(PA.InnerProduct(herror, dinput), betah); //original dinput herror

            dtau = PA.Add(PA.Multiply(betao, oerror), dtau);

            dtheta = PA.Add(PA.Multiply(betah, herror), dtheta); //orig herror

            PA.ToArray(_owt, out owt);
            PA.ToArray(_iwt, out iwt);

            diwt = new DFPA(owt);
            dowt = new DFPA(iwt);
        }
Exemple #4
0
        public FPA NeighborhoodRatio(FPA t)          //Sigma(t)
        {
            FPA exponent = -t / m_Theta;
            FPA Sigmat   = m_SigmaInitial * PA.Pow2(PA.Log2(LogBase) * exponent);

            return(Sigmat);
        }
Exemple #5
0
 public void Terminate()
 {
     dinput.Dispose();
     diwt.Dispose();
     dowt.Dispose();
     doutput.Dispose();
     PA.UnInit();
 }
Exemple #6
0
 public KohonenMap(int width, int height, int pattern_length, GPUK_COMPUTATION_TYPE CompType)
 {
     m_Width         = width;
     m_Height        = height;
     m_PatternLength = pattern_length;
     m_CompType      = CompType;
     PA.InitGPU();
     InitMap();
 }
Exemple #7
0
        /*
         * Function which performs all the GPU operations
         */
        private void run()
        {
            /* Note : Inner product --- Matrix multiplication
             *        Multiply -- Element by element multiplication */

            FPA t1 = PA.Add(PA.InnerProduct(dinput, diwt), dtheta);

            /* ohidden is the output of hidden layer
             * Only Sigmoid function is used for timebeing */
            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow(new FPA(2.71828f, new int[] { numpat, nh }), PA.Negate(t1)), 1.0f));

            FPA t2 = PA.Add(PA.InnerProduct(ohidden, dowt), dtau);

            /* ooutput is the "actual" output of hidden layer
             * Only Sigmoid function is used for timebeing */
            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow(new FPA(2.71828f, new int[] { numpat, no }), PA.Negate(t2)), 1.0f));

            /* Error between expected and actual */
            FPA oerror = PA.Subtract(doutput, ooutput);

            /* Checking if error has fallen below 1% if so terminatinf further cycles */
            BoolParallelArray b = PA.All(PA.CompareGreater(derror, PA.Abs(oerror)), 1);

            b = PA.All(b);
            bool[] bt;
            PA.ToArray(b, out bt);
            if (bt[0] == true)
            {
                traincycles = 0;
            }

            /* herror is the error in the hidden layer */
            FPA herror = PA.Transpose(PA.InnerProduct(dowt, PA.Transpose(oerror, new int[] { 1, 0 })), new int[] { 1, 0 });

            herror = PA.Multiply(PA.Multiply(PA.Subtract(1.0f, ohidden), ohidden), herror);

            /* Weights between hidden  and output layer being updated */
            FPA _owt = PA.Add(PA.Multiply(PA.InnerProduct(PA.Transpose(ohidden, new int[] { 1, 0 }), oerror), betao), dowt);

            /* Weights between input  and hidden layer being updated */
            FPA _iwt = PA.Add(PA.Multiply(PA.InnerProduct(PA.Transpose(dinput, new int[] { 1, 0 }), herror), betah), diwt);

            /*Updating threshold for output layer */
            dtau = PA.Add(PA.Multiply(betao, oerror), dtau);

            /*Updating threshold for hidden layer */
            dtheta = PA.Add(PA.Multiply(betah, herror), dtheta);

            /* Casting the Parallel arrays to normal arrays */
            PA.ToArray(_owt, out owt);
            PA.ToArray(_iwt, out iwt);

            /* Rebuilding the disposable arrays from newly formed arrays */
            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);
        }
Exemple #8
0
        }//Init

        public void FindBMU()
        {
            //Useful locals
            int alen = m_Height * m_Width;

            //Compute the distances from pattern to code vectors
            FPA a    = PA.AddDimension(m_CurrentPatternGPU, 1);
            FPA x    = PA.Stretch(a, 1, alen);
            FPA pol  = PA.Subtract(m_Weights, x);
            FPA pol2 = PA.Multiply(pol, pol);
            FPA pol3 = PA.Sum(pol2, 0);

            m_Distances = PA.Sqrt(pol3);

            //Find the minimal distance
            FPA dist2  = PA.AddDimension(m_Distances, 1);
            FPA minval = PA.MinVal(dist2, 0);

            FPA xxx = PA.Stretch(minval, alen);

            //Prepare trigger array
            BPA trigger = PA.CompareEqual(xxx, m_Distances);

            //BMU Coord ZEROS
            BPA trigger2 = PA.AddDimension(trigger, 0);
            BPA trigger3 = PA.Stretch(trigger2, 2, 1);

            //Extract BMU Coord
            FPA lol = PA.Cond(trigger3, m_Shape, zeros);

            m_BMUCoord = PA.Sum(lol, 1);
            //m_BMUCoord = PA.Evaluate(m_BMUCoord);

            //BMU Code Vector ZEROS
            BPA triggercv2 = PA.AddDimension(trigger, 0);
            BPA triggercv3 = PA.Stretch(triggercv2, m_PatternLength, 1);

            //Extract BMU code vector
            FPA mdr = PA.Cond(triggercv3, m_Weights, zeroscv);

            m_BMUCodeVector = PA.Sum(mdr, 1);
            //m_BMUCodeVector = PA.Evaluate(m_BMUCodeVector);


            //Begin computation ! ^^ AND OUTPUT
            PA.Evaluate(m_BMUCodeVector);
            PA.Evaluate(m_BMUCoord);
        }
Exemple #9
0
        public Bitmap GetBitmap()
        {
            Bitmap bm = new Bitmap(m_Height, m_Width);

            float[,] polbak = new float[80, 80];
            PA.ToArray(m_Weights, out polbak);
            for (int i = 0; i < m_Height; ++i)
            {
                for (int j = 0; j < m_Width; ++j)
                {
                    bm.SetPixel(j, i, Color.FromArgb((int)Math.Floor(Math.Min(Math.Max(polbak[0, m_Width * i + j], 0), 255)),
                                                     (int)Math.Floor(Math.Min(Math.Max(polbak[1, m_Width * i + j], 0), 255)),
                                                     (int)Math.Floor(Math.Min(Math.Max(polbak[2, m_Width * i + j], 0), 255))
                                                     ));
                }
            }
            return(bm);
        }
Exemple #10
0
        public float[] Test(float[] iinput)
        {
            float[,] tinput = new float[1, ni];
            for (int i = 0; i < ni; i++)
            {
                tinput[0, i] = iinput[i];
            }

            dinput = new DFPA(tinput);
            diwt   = new DFPA(iwt);
            dowt   = new DFPA(owt);

            dtheta = PA.Section(dtheta, new Slice(0, 1), new Slice(0, nh));
            dtau   = PA.Section(dtau, new Slice(0, 1), new Slice(0, no));

            FPA t1      = PA.Add(PA.InnerProduct(dinput, diwt), dtheta);
            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t1)), 1.0f));
            FPA t2      = PA.Add(PA.InnerProduct(ohidden, dowt), dtau);

            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t2)), 1.0f));

            float[,] output;
            float[] routput = new float[no];
            PA.ToArray(ooutput, out output);

            for (int i = 0; i < no; i++)
            {
                routput[i] = output[0, i];
            }

            /*Disposable Floating arrays need to be explicitly "disposed" */
            dinput.Dispose();
            diwt.Dispose();
            dowt.Dispose();
            doutput.Dispose();

            /*Releasing all GPU Resources*/
            PA.UnInit();

            return(routput);
        }
Exemple #11
0
        public void start()
        {
            init();

            PA.InitGPU();

            dinput  = new DFPA(input);
            doutput = new DFPA(output);

            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);

            while (traincycles-- > 0)
            {
                run();
            }

            cleanup();

            PA.UnInit();
        }
Exemple #12
0
        public void DoEpoch(int nb)
        {
            int alen = m_Width * m_Height;

            for (int i = 0; i < nb; ++i)
            {
                //Neighborhood Function
                FPA sbmuc = PA.AddDimension(m_BMUCoord, 1);
                sbmuc = PA.Stretch(sbmuc, 1, alen);
                sbmuc = sbmuc - m_Shape;
                sbmuc = PA.Pow2(sbmuc);
                FPA sqdist = PA.Sum(sbmuc, 0);
                sqdist = PA.AddDimension(sqdist, 0);
                sqdist = PA.Stretch(sqdist, m_PatternLength, 1);
                //PA.Evaluate(sqdist);
                //

                //Learning Rate
                FPA lrate = new FPA((float)_CPU_LearningRate(m_time_val), m_PatternLength, alen);

                /*FPA sLearningRate = PA.AddDimension(LearningRate(m_Time), 1);
                 * sLearningRate = PA.Stretch(sLearningRate, m_PatternLength, alen);*/

                //Difference between units and current pattern
                FPA a   = PA.AddDimension(m_CurrentPatternGPU, 1);
                FPA x   = PA.Stretch(a, 1, alen);
                FPA pol = x - m_Weights;

                //Calcul des deltas
                FPA deltaW = lrate * pol;

                //Mise à jour des poids
                m_Weights = m_Weights + deltaW;

                //Incrémente le compteur de temps
                //m_Time = PA.Add(m_Time, 1.0f);
                m_time_val += 1;
            }
        }
Exemple #13
0
        /*
         * Entry Function
         */
        public void start()
        {
            /* Initialisation of all layers*/
            init();

            /*Normalisation of weights */
            normali();
            normalo();

            /*Initialisation of GPU*/
            PA.InitGPU();

            /*Measurement starts*/
            QueryPerformanceCounter(ref timbeg);

            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);

            dinput  = new DFPA(input);
            doutput = new DFPA(output);

            /* Minimum permissible error */
            derror = PA.Abs(PA.Multiply(doutput, 0.01f));

            while (traincycles > 0)
            {
                traincycles--;
                numcycles++;
                run();
            }

            long freq = 0;

            /*Measurement ends */
            QueryPerformanceCounter(ref timend);
            QueryPerformanceFrequency(ref freq);
            _timtaken = (timend - timbeg) * 1.0 / freq;
        }
Exemple #14
0
 public float[] GetBMUCodeVector()
 {
     PA.ToArray(m_BMUCodeVector, out m_bmucodevector_vals);
     return(m_bmucodevector_vals);
 }