protected override IPredictorWithFeatureWeights <float> TrainModelCore(TrainContext context)
        {
            Host.CheckValue(context, nameof(context));
            var trainData = context.TrainingSet;

            ValidData = context.ValidationSet;

            using (var ch = Host.Start("Training"))
            {
                ch.CheckValue(trainData, nameof(trainData));
                trainData.CheckBinaryLabel();
                trainData.CheckFeatureFloatVector();
                trainData.CheckOptFloatWeight();
                FeatureCount = trainData.Schema.Feature.Type.ValueCount;
                ConvertData(trainData);
                TrainCore(ch);
                ch.Done();
            }

            // The FastTree binary classification boosting is naturally calibrated to
            // output probabilities when transformed using a scaled logistic function,
            // so transform the scores using that.

            var pred = new FastTreeBinaryPredictor(Host, TrainedEnsemble, FeatureCount, InnerArgs);
            // FastTree's binary classification boosting framework's natural probabilistic interpretation
            // is explained in "From RankNet to LambdaRank to LambdaMART: An Overview" by Chris Burges.
            // The correctness of this scaling depends upon the gradient calculation in
            // BinaryClassificationObjectiveFunction.GetGradientInOneQuery being consistent with the
            // description in section 6 of the paper.
            var cali = new PlattCalibrator(Host, -1 * _sigmoidParameter, 0);

            return(new FeatureWeightsCalibratedPredictor(Host, pred, cali));
        }
        public static IPredictorProducing <float> Create(IHostEnvironment env, ModelLoadContext ctx)
        {
            Contracts.CheckValue(env, nameof(env));
            env.CheckValue(ctx, nameof(ctx));
            ctx.CheckAtModel(GetVersionInfo());
            var         predictor = new FastTreeBinaryPredictor(env, ctx);
            ICalibrator calibrator;

            ctx.LoadModelOrNull <ICalibrator, SignatureLoadModel>(env, out calibrator, @"Calibrator");
            if (calibrator == null)
            {
                return(predictor);
            }
            return(new SchemaBindableCalibratedPredictor(env, predictor, calibrator));
        }
Exemple #3
0
        public override IPredictorWithFeatureWeights <Float> CreatePredictor()
        {
            Host.Check(TrainedEnsemble != null,
                       "The predictor cannot be created before training is complete");

            // The FastTree binary classification boosting is naturally calibrated to
            // output probabilities when transformed using a scaled logistic function,
            // so transform the scores using that.

            var pred = new FastTreeBinaryPredictor(Host, TrainedEnsemble, FeatureCount, InnerArgs);
            // FastTree's binary classification boosting framework's natural probabilistic interpretation
            // is explained in "From RankNet to LambdaRank to LambdaMART: An Overview" by Chris Burges.
            // The correctness of this scaling depends upon the gradient calculation in
            // BinaryClassificationObjectiveFunction.GetGradientInOneQuery being consistent with the
            // description in section 6 of the paper.
            var cali = new PlattCalibrator(Host, -2 * Args.LearningRates, 0);

            return(new FeatureWeightsCalibratedPredictor(Host, pred, cali));
        }