public LearningPipelineDebugProxy(LearningPipeline pipeline)
        {
            if (pipeline == null)
            {
                throw new ArgumentNullException(nameof(pipeline));
            }

            _pipeline = new LearningPipeline();

            // use a ConcurrencyFactor of 1 so other threads don't need to run in the debugger
            _environment = new MLContext(conc: 1);

            foreach (ILearningPipelineItem item in pipeline)
            {
                _pipeline.Add(item);

                if (item is ILearningPipelineLoader loaderItem)
                {
                    // add a take filter to any loaders, so it returns in a reasonable
                    // amount of time
                    _pipeline.Add(new RowTakeFilter()
                    {
                        Count = MaxLoaderRows
                    });
                }
            }
        }
Exemple #2
0
        public void TestEP_Q_KMeansEntryPointAPI_04()
        {
            var iris = FileHelper.GetTestFile("iris.txt");

            var pipeline = new Legacy.LearningPipeline();

            pipeline.Add(new Legacy.Data.TextLoader(iris).CreateFrom <IrisObservation>(separator: '\t', useHeader: true));
            pipeline.Add(new Legacy.Transforms.ColumnConcatenator("Features", "Sepal_length", "Sepal_width"));
            pipeline.Add(new Legacy.Trainers.KMeansPlusPlusClusterer());
            var model = pipeline.Train <IrisObservation, IrisPrediction>();
            var obs   = new IrisObservation()
            {
                Sepal_length = 3.3f,
                Sepal_width  = 1.6f,
                Petal_length = 0.2f,
                Petal_width  = 5.1f,
            };
            var predictions = model.Predict(obs);

            Assert.IsTrue(predictions.PredictedLabel != 0);
        }