private static void DoCubicMidpointSubdivision(Point[] controlPoints, uint depth, double inverseErrorTolerance, List <Point> resultPolyline)
 {
     Point[] controlPoints1 = new Point[4]
     {
         controlPoints[0],
         controlPoints[1],
         controlPoints[2],
         controlPoints[3]
     };
     Point[] controlPoints2 = new Point[4];
     controlPoints2[3] = controlPoints1[3];
     controlPoints1[3] = VectorUtilities.Midpoint(controlPoints1[3], controlPoints1[2]);
     controlPoints1[2] = VectorUtilities.Midpoint(controlPoints1[2], controlPoints1[1]);
     controlPoints1[1] = VectorUtilities.Midpoint(controlPoints1[1], controlPoints1[0]);
     controlPoints2[2] = controlPoints1[3];
     controlPoints1[3] = VectorUtilities.Midpoint(controlPoints1[3], controlPoints1[2]);
     controlPoints1[2] = VectorUtilities.Midpoint(controlPoints1[2], controlPoints1[1]);
     controlPoints2[1] = controlPoints1[3];
     controlPoints1[3] = VectorUtilities.Midpoint(controlPoints1[3], controlPoints1[2]);
     controlPoints2[0] = controlPoints1[3];
     --depth;
     if (depth > 0U)
     {
         BezierCurveFlattener.DoCubicMidpointSubdivision(controlPoints1, depth, inverseErrorTolerance, resultPolyline);
         resultPolyline.Add(controlPoints2[0]);
         BezierCurveFlattener.DoCubicMidpointSubdivision(controlPoints2, depth, inverseErrorTolerance, resultPolyline);
     }
     else
     {
         BezierCurveFlattener.DoCubicForwardDifferencing(controlPoints1, inverseErrorTolerance, resultPolyline);
         resultPolyline.Add(controlPoints2[0]);
         BezierCurveFlattener.DoCubicForwardDifferencing(controlPoints2, inverseErrorTolerance, resultPolyline);
     }
 }
        private static void DoCubicForwardDifferencing(Point[] controlPoints, double leftParameter, double rightParameter, double inverseErrorTolerance, List <Point> resultPolyline, List <double> resultParameters)
        {
            double num1   = controlPoints[1].X - controlPoints[0].X;
            double num2   = controlPoints[1].Y - controlPoints[0].Y;
            double num3   = controlPoints[2].X - controlPoints[1].X;
            double num4   = controlPoints[2].Y - controlPoints[1].Y;
            double num5   = controlPoints[3].X - controlPoints[2].X;
            double num6   = controlPoints[3].Y - controlPoints[2].Y;
            double num7   = num3 - num1;
            double num8   = num4 - num2;
            double num9   = num5 - num3;
            double num10  = num6 - num4;
            double num11  = num9 - num7;
            double num12  = num10 - num8;
            Vector vector = controlPoints[3] - controlPoints[0];
            double length = vector.Length;
            double num13  = length < FloatingPointArithmetic.DistanceTolerance ? Math.Max(0.0, Math.Max(VectorUtilities.Distance(controlPoints[1], controlPoints[0]), VectorUtilities.Distance(controlPoints[2], controlPoints[0]))) : Math.Max(0.0, Math.Max(Math.Abs((num7 * vector.Y - num8 * vector.X) / length), Math.Abs((num9 * vector.Y - num10 * vector.X) / length)));
            uint   num14  = 0U;

            if (num13 > 0.0)
            {
                double d = num13 * inverseErrorTolerance;
                num14 = d < (double)int.MaxValue ? BezierCurveFlattener.Log4UnsignedInt32((uint)(d + 0.5)) : BezierCurveFlattener.Log4Double(d);
            }
            int    exp1  = -(int)num14;
            int    exp2  = exp1 + exp1;
            int    exp3  = exp2 + exp1;
            double num15 = FloatingPointArithmetic.DoubleFromMantissaAndExponent(3.0 * num7, exp2);
            double num16 = FloatingPointArithmetic.DoubleFromMantissaAndExponent(3.0 * num8, exp2);
            double num17 = FloatingPointArithmetic.DoubleFromMantissaAndExponent(6.0 * num11, exp3);
            double num18 = FloatingPointArithmetic.DoubleFromMantissaAndExponent(6.0 * num12, exp3);
            double num19 = FloatingPointArithmetic.DoubleFromMantissaAndExponent(3.0 * num1, exp1) + num15 + 1.0 / 6.0 * num17;
            double num20 = FloatingPointArithmetic.DoubleFromMantissaAndExponent(3.0 * num2, exp1) + num16 + 1.0 / 6.0 * num18;
            double num21 = 2.0 * num15 + num17;
            double num22 = 2.0 * num16 + num18;
            double x     = controlPoints[0].X;
            double y     = controlPoints[0].Y;
            Point  point = new Point(0.0, 0.0);
            int    num23 = 1 << (int)num14;
            double num24 = num23 > 0 ? (rightParameter - leftParameter) / (double)num23 : 0.0;
            double num25 = leftParameter;

            for (int index = 1; index < num23; ++index)
            {
                x      += num19;
                y      += num20;
                point.X = x;
                point.Y = y;
                resultPolyline.Add(point);
                num25 += num24;
                resultParameters.Add(num25);
                num19 += num21;
                num20 += num22;
                num21 += num17;
                num22 += num18;
            }
        }
 public static void FlattenQuadratic(Point[] controlPoints, double errorTolerance, List <Point> resultPolyline, bool connect)
 {
     BezierCurveFlattener.FlattenCubic(new Point[4]
     {
         controlPoints[0],
         VectorUtilities.WeightedAverage(controlPoints[0], controlPoints[1], 2.0 / 3.0),
         VectorUtilities.WeightedAverage(controlPoints[1], controlPoints[2], 1.0 / 3.0),
         controlPoints[2]
     }, errorTolerance, resultPolyline, connect);
 }
        public static bool CompareAlgorithmsOnChordMonotoneCubic(Point[] controlPoints, double errorTolerance)
        {
            if (!BezierCurveFlattener.IsCubicChordMonotone(controlPoints, errorTolerance * errorTolerance))
            {
                return(false);
            }
            List <Point> list1 = new List <Point>(16);
            List <Point> list2 = new List <Point>(16);

            list1.Add(controlPoints[0]);
            list2.Add(controlPoints[0]);
            double x     = controlPoints[3].X - controlPoints[2].X + controlPoints[1].X - controlPoints[0].X;
            double y     = controlPoints[3].Y - controlPoints[2].Y + controlPoints[1].Y - controlPoints[0].Y;
            double num   = 1.0 / errorTolerance;
            uint   depth = BezierCurveFlattener.Log8UnsignedInt32((uint)(FloatingPointArithmetic.Hypotenuse(x, y) * num + 0.5));

            if (depth > 0U)
            {
                --depth;
            }
            if (depth > 0U)
            {
                BezierCurveFlattener.DoCubicMidpointSubdivision(controlPoints, depth, 0.75 * num, list1);
            }
            else
            {
                BezierCurveFlattener.DoCubicForwardDifferencing(controlPoints, 0.75 * num, list1);
            }
            BezierCurveFlattener.AdaptiveForwardDifferencingCubicFlattener differencingCubicFlattener = new BezierCurveFlattener.AdaptiveForwardDifferencingCubicFlattener(controlPoints, errorTolerance, errorTolerance, false);
            Point p = new Point();

            while (differencingCubicFlattener.Next(ref p))
            {
                list2.Add(p);
            }
            list1.Add(controlPoints[3]);
            list2.Add(controlPoints[3]);
            double[] cumulatedChordLength1 = VectorUtilities.GetCumulatedChordLength(list1, 0, list1.Count - 1);
            double[] cumulatedChordLength2 = VectorUtilities.GetCumulatedChordLength(list2, 0, list2.Count - 1);
            int      firstBadVertexInQ     = 0;

            return(VectorUtilities.ArePolylinesClose(list1, cumulatedChordLength1, 0, list1.Count - 1, list2, cumulatedChordLength2, 0, list2.Count - 1, errorTolerance, ref firstBadVertexInQ));
        }
 public static void FlattenCubic(Point[] controlPoints, double errorTolerance, List <Point> resultPolyline, bool connect, List <double> resultParameters)
 {
     if (!connect || resultPolyline.Count == 0)
     {
         resultPolyline.Add(controlPoints[0]);
         resultParameters.Add(0.0);
     }
     if (BezierCurveFlattener.IsCubicChordMonotone(controlPoints, errorTolerance * errorTolerance))
     {
         BezierCurveFlattener.AdaptiveForwardDifferencingCubicFlattener differencingCubicFlattener = new BezierCurveFlattener.AdaptiveForwardDifferencingCubicFlattener(controlPoints, errorTolerance, errorTolerance, true);
         Point  p = new Point();
         double u = 0.0;
         while (differencingCubicFlattener.Next(ref p, ref u))
         {
             resultPolyline.Add(p);
             resultParameters.Add(u);
         }
     }
     else
     {
         double x     = controlPoints[3].X - controlPoints[2].X + controlPoints[1].X - controlPoints[0].X;
         double y     = controlPoints[3].Y - controlPoints[2].Y + controlPoints[1].Y - controlPoints[0].Y;
         double num   = 1.0 / errorTolerance;
         uint   depth = BezierCurveFlattener.Log8UnsignedInt32((uint)(FloatingPointArithmetic.Hypotenuse(x, y) * num + 0.5));
         if (depth > 0U)
         {
             --depth;
         }
         if (depth > 0U)
         {
             BezierCurveFlattener.DoCubicMidpointSubdivision(controlPoints, depth, 0.0, 1.0, 0.75 * num, resultPolyline, resultParameters);
         }
         else
         {
             BezierCurveFlattener.DoCubicForwardDifferencing(controlPoints, 0.0, 1.0, 0.75 * num, resultPolyline, resultParameters);
         }
     }
     resultPolyline.Add(controlPoints[3]);
     resultParameters.Add(1.0);
 }
        private static void DoCubicMidpointSubdivision(Point[] controlPoints, uint depth, double leftParameter, double rightParameter, double inverseErrorTolerance, List <Point> resultPolyline, List <double> resultParameters)
        {
            Point[] controlPoints1 = new Point[4]
            {
                controlPoints[0],
                controlPoints[1],
                controlPoints[2],
                controlPoints[3]
            };
            Point[] controlPoints2 = new Point[4];
            controlPoints2[3] = controlPoints1[3];
            controlPoints1[3] = VectorUtilities.Midpoint(controlPoints1[3], controlPoints1[2]);
            controlPoints1[2] = VectorUtilities.Midpoint(controlPoints1[2], controlPoints1[1]);
            controlPoints1[1] = VectorUtilities.Midpoint(controlPoints1[1], controlPoints1[0]);
            controlPoints2[2] = controlPoints1[3];
            controlPoints1[3] = VectorUtilities.Midpoint(controlPoints1[3], controlPoints1[2]);
            controlPoints1[2] = VectorUtilities.Midpoint(controlPoints1[2], controlPoints1[1]);
            controlPoints2[1] = controlPoints1[3];
            controlPoints1[3] = VectorUtilities.Midpoint(controlPoints1[3], controlPoints1[2]);
            controlPoints2[0] = controlPoints1[3];
            --depth;
            double num = (leftParameter + rightParameter) * 0.5;

            if (depth > 0U)
            {
                BezierCurveFlattener.DoCubicMidpointSubdivision(controlPoints1, depth, leftParameter, num, inverseErrorTolerance, resultPolyline, resultParameters);
                resultPolyline.Add(controlPoints2[0]);
                resultParameters.Add(num);
                BezierCurveFlattener.DoCubicMidpointSubdivision(controlPoints2, depth, num, rightParameter, inverseErrorTolerance, resultPolyline, resultParameters);
            }
            else
            {
                BezierCurveFlattener.DoCubicForwardDifferencing(controlPoints1, leftParameter, num, inverseErrorTolerance, resultPolyline, resultParameters);
                resultPolyline.Add(controlPoints2[0]);
                resultParameters.Add(num);
                BezierCurveFlattener.DoCubicForwardDifferencing(controlPoints2, num, rightParameter, inverseErrorTolerance, resultPolyline, resultParameters);
            }
        }
Exemple #7
0
        private void OpenFit2DFromTo(int first, Vector unitTangentFirst, int last, Vector unitTangentLast, bool onlyCubics)
        {
            int length = last - first + 1;
            int num1   = length - 1;
            PathFigureEditor pathFigureEditor = new PathFigureEditor(this.figure);

            if (length == 2)
            {
                if (onlyCubics)
                {
                    double num2 = VectorUtilities.Distance(this.sample[first], this.sample[last]) / 3.0;
                    Point  p1   = this.sample[first] + unitTangentFirst * num2;
                    Point  p2   = this.sample[last] - unitTangentLast * num2;
                    pathFigureEditor.CubicCurveTo(p1, p2, this.sample[last]);
                }
                else
                {
                    pathFigureEditor.LineTo(this.sample[last]);
                }
            }
            else if (length == 3)
            {
                int    index1  = first + 1;
                Vector vector1 = this.sample[first] - this.sample[index1];
                Vector vector2 = this.sample[last] - this.sample[index1];
                Vector vector3 = vector1;
                vector3.Normalize();
                Vector vector4 = vector2;
                vector4.Normalize();
                Vector vector5 = vector3 + vector4;
                Vector vector6;
                if (VectorUtilities.IsZero(vector5))
                {
                    vector6 = this.sample[last] - this.sample[first];
                    vector6.Normalize();
                }
                else
                {
                    vector6 = VectorUtilities.UnitNormal(vector5);
                }
                if (VectorUtilities.Dot(vector6, this.sample[last] - this.sample[first]) < 0.0)
                {
                    vector6 *= -1.0;
                }
                this.OpenFit2DFromTo(first, unitTangentFirst, index1, vector6, onlyCubics);
                int index2 = PathFigureUtilities.PointCount(this.figure) - 1;
                this.OpenFit2DFromTo(index1, vector6, last, unitTangentLast, onlyCubics);
                this.SetupCollinearHandlesConstraint(index2, onlyCubics);
            }
            else
            {
                double[][] numArray1 = new double[length][];
                for (int index = 0; index < length; ++index)
                {
                    numArray1[index] = new double[4];
                }
                double   num2      = 1.0 / (this.chordLength[last] - this.chordLength[first]);
                double[] numArray2 = new double[length];
                for (int index = 0; index <= num1; ++index)
                {
                    numArray2[index] = (this.chordLength[first + index] - this.chordLength[first]) * num2;
                }
                double[] numArray3 = new double[4];
                numArray3[0] = 1.0;
                for (int index1 = 0; index1 <= num1; ++index1)
                {
                    numArray3[1] = 1.0 - numArray2[index1];
                    for (int index2 = 2; index2 <= 3; ++index2)
                    {
                        numArray3[index2] = numArray3[index2 - 1] * numArray3[1];
                    }
                    numArray1[index1][0] = numArray3[3];
                    double num3   = numArray2[index1];
                    int    index3 = 1;
                    while (index3 <= 3)
                    {
                        numArray1[index1][index3] = (double)BezierCurveFitter.pascalTriangle[3][index3] * num3 * numArray3[3 - index3];
                        ++index3;
                        num3 *= numArray2[index1];
                    }
                }
                double[][] numArray4 = new double[4][];
                for (int index = 0; index < 4; ++index)
                {
                    numArray4[index] = new double[4];
                }
                for (int index1 = 0; index1 <= 3; ++index1)
                {
                    for (int index2 = 0; index2 <= index1; ++index2)
                    {
                        for (int index3 = 0; index3 <= num1; ++index3)
                        {
                            numArray4[index1][index2] += numArray1[index3][index2] * numArray1[index3][index1];
                        }
                        if (index1 != index2)
                        {
                            numArray4[index2][index1] = numArray4[index1][index2];
                        }
                    }
                }
                double[][] m = new double[2][]
                {
                    new double[2]
                    {
                        numArray4[1][1],
                        numArray4[1][2] * VectorUtilities.Dot(unitTangentFirst, unitTangentLast)
                    },
                    new double[2]
                    {
                        numArray4[1][2],
                        numArray4[2][2]
                    }
                };
                double[] v           = new double[2];
                Vector[] vectorArray = new Vector[4];
                for (int index1 = 0; index1 < 4; ++index1)
                {
                    for (int index2 = 0; index2 <= num1; ++index2)
                    {
                        vectorArray[index1].X += numArray1[index2][index1] * this.sample[index2 + first].X;
                        vectorArray[index1].Y += numArray1[index2][index1] * this.sample[index2 + first].Y;
                    }
                }
                Vector vector1 = new Vector(this.sample[first].X, this.sample[first].Y);
                Vector vector2 = new Vector(this.sample[last].X, this.sample[last].Y);
                Vector b1      = (numArray4[1][0] + numArray4[1][1]) * vector1 + (numArray4[1][2] + numArray4[1][3]) * vector2 - vectorArray[1];
                v[0] = -VectorUtilities.Dot(unitTangentFirst, b1);
                Vector b2 = (numArray4[2][0] + numArray4[2][1]) * vector1 + (numArray4[2][2] + numArray4[2][3]) * vector2 - vectorArray[2];
                v[1] = -VectorUtilities.Dot(unitTangentLast, b2);
                bool flag = BezierCurveFitter.Solve2By2LinearSystem(m, v);
                int  firstBadVertexInQ = 0;
                if (flag && v[0] > 0.0 && v[1] < 0.0)
                {
                    Point[] controlPoints = new Point[4];
                    controlPoints[0] = this.sample[first];
                    controlPoints[1] = controlPoints[0] + v[0] * unitTangentFirst;
                    controlPoints[3] = this.sample[last];
                    controlPoints[2] = controlPoints[3] + v[1] * unitTangentLast;
                    List <Point> list = new List <Point>(128);
                    BezierCurveFlattener.FlattenCubic(controlPoints, this.distanceTolerance, list, false);
                    double[] cumulatedChordLength = VectorUtilities.GetCumulatedChordLength(list, 0, list.Count - 1);
                    if (VectorUtilities.ArePolylinesClose(list, cumulatedChordLength, 0, list.Count - 1, this.sample, this.chordLength, first, last, this.distanceTolerance, ref firstBadVertexInQ))
                    {
                        pathFigureEditor.CubicCurveTo(controlPoints[1], controlPoints[2], controlPoints[3]);
                        return;
                    }
                }
                int    num4 = (first + last) / 2;
                Vector tangentVectorAtSplit = this.GetUnitTangentVectorAtSplit(num4);
                this.OpenFit2DFromTo(first, unitTangentFirst, num4, tangentVectorAtSplit, onlyCubics);
                int index4 = PathFigureUtilities.PointCount(this.figure) - 1;
                this.OpenFit2DFromTo(num4, tangentVectorAtSplit, last, unitTangentLast, onlyCubics);
                this.SetupCollinearHandlesConstraint(index4, onlyCubics);
            }
        }