Evd() public méthode

public Evd ( Symmetricity symmetricity = Symmetricity.Unknown ) : Evd
symmetricity Symmetricity
Résultat Evd
Exemple #1
0
        public void CanCheckRankOfSquareSingular([Values(10, 50, 100)] int order)
        {
            var A = new DenseMatrix(order, order);
            A[0, 0] = 1;
            A[order - 1, order - 1] = 1;
            for (var i = 1; i < order - 1; i++)
            {
                A[i, i - 1] = 1;
                A[i, i + 1] = 1;
                A[i - 1, i] = 1;
                A[i + 1, i] = 1;
            }
            var factorEvd = A.Evd();

            Assert.AreEqual(factorEvd.Determinant, 0);
            Assert.AreEqual(factorEvd.Rank, order - 1);
        }
Exemple #2
0
        public void CanCheckRankOfSquareSingular(int order)
        {
            var matrixA = new DenseMatrix(order, order);
            matrixA[0, 0] = 1;
            matrixA[order - 1, order - 1] = 1;
            for (var i = 1; i < order - 1; i++)
            {
                matrixA[i, i - 1] = 1;
                matrixA[i, i + 1] = 1;
                matrixA[i - 1, i] = 1;
                matrixA[i + 1, i] = 1;
            }
            var factorEvd = matrixA.Evd();

            Assert.AreEqual(factorEvd.Determinant, 0);
            Assert.AreEqual(factorEvd.Rank, order - 1);
        }
        Evd evd; //factorization storage

        #endregion Fields

        #region Constructors

        public vanillaLogCov(float[,] matrix1, float[,] matrix2)
        {
            //deep copy the covariances
            //densematrix allocates new memory for the matrix
            cov1 = new DenseMatrix(Covariance(matrix1));
            cov2 = new DenseMatrix(Covariance(matrix2));
            evd = cov1.Evd();
            diag = evd.D();
            //could make this a function but thats for later cleanup.... < . <
            //should be square matrix so matrix lengths dont matter
            for (int i = 0; i < diag.RowCount; i++)
            {
                diag[i, i] = (float)Math.Log(Math.Abs((double)diag[i, i]));
            }
            logcov1 = evd.EigenVectors() * diag * evd.EigenVectors().Transpose();

            evd = cov2.Evd();
            diag = evd.D();
            //could make this a function but thats for later cleanup.... < . <
            //should be square matrix so matrix lengths dont matter
            for (int i = 0; i < diag.RowCount; i++)
            {
                diag[i, i] = (float)Math.Log(Math.Abs((double)diag[i, i]));
            }
            logcov2 = evd.EigenVectors() * diag * evd.EigenVectors().Transpose();

            //compute distance
            distance = 0; //initialize to empty
            for (int i = 0; i < logcov2.RowCount; i++)
            {
                for (int j = 0; j < logcov2.RowCount; j++)
                {
                    distance += (float)Math.Pow(logcov1[i, j] - logcov2[i, j], 2);
                }
            }
            distance = (float)Math.Sqrt(distance);
        }
        public MathNet.Numerics.LinearAlgebra.Generic.Matrix<float> ToCovMat(int VectDimen, int FPSegment, float[,] DistData, float[] MeanDist)
        {
            DenseMatrix Cov = new DenseMatrix(VectDimen);
            for (int i = 0; i < VectDimen; i++)
            {
                for (int j = i; j < VectDimen; j++)
                {
                    for (int t = 0; t < FPSegment; t++)
                    {
                        Cov[i, j] += DistData[i, t] * DistData[j, t];
                    }
                    Cov[i, j] -= MeanDist[i] * MeanDist[j] * FPSegment;
                    Cov[i, j] /= FPSegment - 1;
                }
            }
            for (int i = 0; i < VectDimen; i++)
            {
                for (int j = i; j < VectDimen; j++)
                {
                    Cov[j, i] = Cov[i, j];
                }
            }

            MathNet.Numerics.LinearAlgebra.Single.Factorization.Evd evd;
            MathNet.Numerics.LinearAlgebra.Generic.Matrix<float> LogD;

            var thread = new Thread(() => tryEvd(Cov));
            thread.Start();

            if (!thread.Join(3000))
            {
                LogD = Cov;
                LogD.Clear();
                return LogD;
            }

            evd = Cov.Evd();
            LogD = evd.D();

            for (int i = 0; i < VectDimen; i++)
            {
                LogD[i, i] = (float)Math.Log(Math.Abs((double)LogD[i, i]));

            }
            MathNet.Numerics.LinearAlgebra.Generic.Matrix<float> LogCov;
            LogCov = evd.EigenVectors() * LogD * evd.EigenVectors().Transpose();

            return LogCov;
        }