public void CanCreateCategoricalFromHistogram()
        {
            double[] smallDataset = { 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 };
            Histogram hist = new Histogram(smallDataset, 10, 0.0, 10.0);
            var m = new Categorical(hist);

            for (int i = 0; i <= m.Maximum; i++)
            {
                AssertEx.AreEqual<double>(1.0/10.0, m.P[i]);
            }
        }
Exemple #2
0
        /// <summary>
        /// Samples one multinomial distributed random variable.
        /// </summary>
        /// <param name="rnd">The random number generator to use.</param>
        /// <param name="p">An array of nonnegative ratios: this array does not need to be normalized
        /// as this is often impossible using floating point arithmetic.</param>
        /// <param name="n">The number of trials.</param>
        /// <returns>the counts for each of the different possible values.</returns>
        public static int[] Sample(System.Random rnd, double[] p, int n)
        {
            if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
            {
                throw new ArgumentOutOfRangeException(Resources.InvalidDistributionParameters);
            }

            // The cumulative density of p.
            var cp = Categorical.ProbabilityMassToCumulativeDistribution(p);

            // The variable that stores the counts.
            var ret = new int[p.Length];

            for (var i = 0; i < n; i++)
            {
                ret[Categorical.SampleUnchecked(rnd, cp)]++;
            }

            return(ret);
        }
Exemple #3
0
        /// <summary>
        /// Samples a multinomially distributed random variable.
        /// </summary>
        /// <param name="rnd">The random number generator to use.</param>
        /// <param name="p">An array of nonnegative ratios: this array does not need to be normalized
        /// as this is often impossible using floating point arithmetic.</param>
        /// <param name="n">The number of variables needed.</param>
        /// <returns>a sequence of counts for each of the different possible values.</returns>
        public static IEnumerable <int[]> Samples(Random rnd, double[] p, int n)
        {
            if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
            {
                throw new ArgumentOutOfRangeException(Resources.InvalidDistributionParameters);
            }

            // The cumulative density of p.
            var cp = Categorical.UnnormalizedCdf(p);

            while (true)
            {
                // The variable that stores the counts.
                var ret = new int[p.Length];

                for (var i = 0; i < n; i++)
                {
                    ret[Categorical.DoSample(rnd, cp)]++;
                }

                yield return(ret);
            }
        }
 public void CanSample()
 {
     var n = new Categorical(_largeP);
     n.Sample();
 }
 public void ValidateToString()
 {
     var b = new Categorical(_smallP);
     Assert.AreEqual("Categorical(Dimension = 3)", b.ToString());
 }
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/Categorical_distribution">Categorical distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)
            var binomial = new Categorical(new[] { 0.1, 0.2, 0.25, 0.45 });
            Console.WriteLine(@"1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)");
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", binomial);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000"));

            // Entropy
            Console.WriteLine(@"{0} - Entropy", binomial.Entropy.ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", binomial.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000"));

            // Median
            Console.WriteLine(@"{0} - Median", binomial.Median.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000"));

            // 3. Generate 10 samples of the Categorical distribution
            Console.WriteLine(@"3. Generate 10 samples of the Categorical distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(binomial.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the Categorical(new []{ 0.1, 0.2, 0.25, 0.45 }) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the Categorical(0.2, 20) distribution and display histogram");
            var data = new double[100000];
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = binomial.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the Categorical(new []{ 0.6, 0.2, 0.1, 0.1 }) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the Categorical(0.7, 20) distribution and display histogram");
            binomial.P = new[] { 0.6, 0.2, 0.1, 0.1 };
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = binomial.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
        }
 public void CategoricalCreateFailsWithAllZeroRatios()
 {
     var m = new Categorical(badP2);
 }
 public void CanSetProbability()
 {
     var b = new Categorical(largeP);
     b.P = smallP;
 }
 public void CanSample()
 {
     var n = new Categorical(largeP);
     var d = n.Sample();
 }
 public void CanCreateCategorical()
 {
     var m = new Categorical(largeP);
 }
 public void SetProbabilityFails()
 {
     var b = new Categorical(largeP);
     b.P = badP;
 }
 public void CategoricalCreateFailsWithNullHistogram()
 {
     Histogram h = null;
     var m = new Categorical(h);
 }
 public void CategoricalCreateFailsWithNegativeRatios()
 {
     var m = new Categorical(badP);
 }