Exemple #1
0
 public static bool Export2Bitmap(this UISettings ui, Bitmap bmp1, Bitmap bmp2, string filename, Boolean separate)
 {
     try {             // compare bmp1 bmp2 dimension may be neccessary
         if (separate) //export in 2 files
         {
             int    lastdot = filename.LastIndexOf('.');
             string file2   = filename.Substring(0, lastdot) + "_bw" + filename.Substring(lastdot);
             using (Bitmap finalBitmap = new Bitmap(bmp1.Width / ui.ExportDetailRatio, bmp1.Height / ui.ExportDetailRatio))
             {
                 using (Graphics gm = Graphics.FromImage(finalBitmap))
                 {
                     gm.Clear(Color.Black); //set background color
                     gm.DrawImage(bmp1, new Rectangle(0, 0, bmp1.Width / ui.ExportDetailRatio, bmp1.Height / ui.ExportDetailRatio));
                 }
                 finalBitmap.Save(filename, System.Drawing.Imaging.ImageFormat.Jpeg.getEncoder(), 85L.jpgEncoderCQ());
             }
             using (Bitmap finalBitmap = new Bitmap(bmp2.Width / ui.ExportDetailRatio, bmp2.Height / ui.ExportDetailRatio))
             {
                 using (Graphics gm = Graphics.FromImage(finalBitmap))
                 {
                     gm.Clear(Color.Black); //set background color
                     gm.DrawImage(bmp2, new Rectangle(0, 0, bmp2.Width / ui.ExportDetailRatio, bmp2.Height / ui.ExportDetailRatio));
                 }
                 finalBitmap.Save(file2, System.Drawing.Imaging.ImageFormat.Jpeg.getEncoder(), 85L.jpgEncoderCQ());
             }
             return(true);
         }
         else     //export in 1 file, horizontal merge
         {
             using (Bitmap finalBitmap = new Bitmap(bmp1.Width * 2 / ui.ExportDetailRatio, bmp1.Height / ui.ExportDetailRatio))
             {
                 using (Graphics gm = Graphics.FromImage(finalBitmap))
                 {
                     gm.Clear(Color.Black); //set background color
                     gm.DrawImage(bmp1, new Rectangle(0, 0, bmp1.Width / ui.ExportDetailRatio, bmp1.Height / ui.ExportDetailRatio));
                     gm.DrawImage(bmp2, new Rectangle(bmp1.Width / ui.ExportDetailRatio, 0, bmp1.Width / ui.ExportDetailRatio, bmp1.Height / ui.ExportDetailRatio));
                 }
                 finalBitmap.Save(filename, System.Drawing.Imaging.ImageFormat.Jpeg.getEncoder(), 85L.jpgEncoderCQ());
                 return(true);
             }
         }
     } catch { return(false); }
 }
Exemple #2
0
        public CalPAP(UISettings ui, FileData file, ref ConcurrentBag <double> AreaBag) : base(ui, file)
        {
            try {
                MulticolorComponentsLabeling mclabel = new MulticolorComponentsLabeling()
                {
                    Low  = (int)Math.Round(Low_Threshold / ui.um2px2),
                    High = (int)Math.Round(Math.Min(int.MaxValue, High_Threshold / ui.um2px2))
                };

                Invert AFinvert = new Invert();
                UnmanagedResult = mclabel.Apply(AFinvert.Apply(UnmanagedBlackWhite));
                foreach (Blobx blob in mclabel.BlobCounter.blobs)
                {
                    //if (blob.Area<mclabel.Low) {
                    //	Low_count++; Low_sumArea+=blob.Area;
                    //} else if (blob.Area<=mclabel.High) {
                    Normal_count++; Normal_SumArea += ui.um2px2 * blob.Area; AreaBag.Add(ui.um2px2 * blob.Area);
                    //} else {
                    //	High_count++; High_sumArea+=blob.Area;
                    //}
                }

                Total_SumArea = ui.um2px2 * (UnmanagedMarkup.Width * UnmanagedMarkup.Height); // total area
                Lung_SumArea  = Total_SumArea - Low_SumArea - High_SumArea;                   // lung area
                Paren_SumArea = Lung_SumArea - NonParen_SumArea;                              // parenchymal area
                Tis_SumArea   = Paren_SumArea - Normal_SumArea;                               // septum tissue
                Normal_Count  = 1000.0d * 1000.0d * Normal_count / Paren_SumArea;             // counts per reference area

                StringBuilder header = new StringBuilder();
                header.Append($"{FileName}  ps: {ui.PixelScale:G2}/{ui.ResizeValue:G2} px/um"
                              + $"\nlung: {Lung_SumArea:G2}µm\xB2, {Lung_SumArea/Total_SumArea:0%} image (blw: {Low_SumArea/Total_SumArea:0%} ovr: {High_SumArea/Total_SumArea:0%})"
                              + $"\nparenchyma: {Paren_SumArea:G2}µm\xB2, {Paren_SumArea/Lung_SumArea:0%} lung (exc: {NonParen_SumArea/Total_SumArea:0%})"
                              + $"\nseptum: {Tis_SumArea:G2}µm\xB2, {Tis_SumArea/Paren_SumArea:0%} paren (airspace: {Normal_SumArea/Total_SumArea:0%})");

                StringBuilder footer = new StringBuilder();
                footer.Append($"Total #: {mclabel.BlobCounter.blobs.Count}");

                UnmanagedMarkup = UnmanagedImage.FromManagedImage(AddBlobText(UnmanagedMarkup.ToManagedImage(false), Color.Black, $"{header}", $"{footer}", null, null, (int)Math.Round(0.02d * UnmanagedMarkup.Width * Math.Sqrt(ui.ExportDetailRatio))));
                UnmanagedResult = UnmanagedImage.FromManagedImage(AddBlobText(UnmanagedResult.ToManagedImage(false), Color.PaleGreen, $"{header}", $"{footer}", null, null, (int)Math.Round(0.02d * UnmanagedMarkup.Width * Math.Sqrt(ui.ExportDetailRatio))));
            } catch { throw new Exception("Error Occured During Airspace Profiling"); }
        }
        //public static T DeepCopy<T>(T other)
        //{
        //	using (var ms = new MemoryStream()) {
        //		var formatter = new BinaryFormatter();
        //		formatter.Serialize(ms, other);
        //		ms.Position=0;
        //		return (T)formatter.Deserialize(ms);
        //	}
        //}

        //public static async Task<bool> Save(this UISettings ui, string filename = "LastSaved.xsetting")
        //{
        //	ui.ShowBusySign("Saving Settings...");
        //	bool result = await Task<bool>.Factory.StartNew(() => {
        //		try {
        //			using (FileStream fsUserSetting = File.Create(filename)) {
        //				var formatter = new XmlSerializer(ui.GetType());
        //				formatter.Serialize(fsUserSetting, ui);
        //			}
        //			return true;
        //		} catch { MessageBox.Show("Failed to save the current settings!", "Error", MessageBoxButton.OK, MessageBoxImage.Error); return false; }
        //	});
        //	ui.StopBusySign(); return result;
        //}
        public static async Task <bool> SaveCrypt(this UISettings ui, string filename = "LastSaved.xsetting")
        {
            ui.ShowBusySign("Saving Settings...");
            try {
                await Task.Factory.StartNew(() => {
                    var aUE      = new UnicodeEncoding();
                    byte[] key   = aUE.GetBytes("password");
                    var RMCrypto = new RijndaelManaged();
                    using (var fs = File.Open(filename, FileMode.Create)) {
                        using (var cs = new CryptoStream(fs, RMCrypto.CreateEncryptor(key, key), CryptoStreamMode.Write)) {
                            var xml = new XmlSerializer(ui.GetType());
                            xml.Serialize(cs, ui);
                        }
                    }
                });

                return(true);
            } catch {
                MessageBox.Show("Failed to save the current settings!", "Error", MessageBoxButton.OK, MessageBoxImage.Error);
                return(false);
            } finally { ui.StopBusySign(); }
        }
Exemple #4
0
 public static async Task BatchAQ2(this UISettings ui, List <FileData> listfiles)
 {
     try {
         Directory.CreateDirectory($"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAQ2");                 // quantify with 2-dist
         using (var file = File.AppendText($"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAQ2.csv")) {
             file.Write("\n" + CalBlobAQ2.getEntryNote + "\n" + CalBlobAQ2.getDescription + "\n" + CalBlobAQ2.getHeader);
         }
         var progress = new Progress($"Analyzing {listfiles.Count} files ...", listfiles.Count);
         using (ui.cts = new CancellationTokenSource()) {
             if (!ui.MultiThreadingSwitch)                       // false - single thread
             {
                 foreach (FileData imgfile in listfiles)
                 {
                     using (var img = await Task <CalBlobAQ2> .Factory.StartNew(() => { return(new CalBlobAQ2(ui, imgfile)); })) {
                         ui.UpdateImageSource(img.BitmapOriginal, img.BitmapMarkup, img.BitmapExclude, img.BitmapGray, img.BitmapBlackWhite, img.BitmapResult);
                         ui.Export2Bitmap(img.BitmapMarkup, img.BitmapResult, $"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAQ2\\{img.OutName}.png", ui.ExportDetailSwitch);
                         progress.Increment(ui, $"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAQ2.csv", img.getResult);
                     }
                     ui.cts.Token.ThrowIfCancellationRequested();
                 }
             }
             else                         // true - open multi thread pool
             {
                 await Task.Factory.StartNew(() => {
                     Parallel.ForEach(listfiles, new ParallelOptions()
                     {
                         CancellationToken = ui.cts.Token, MaxDegreeOfParallelism = Environment.ProcessorCount
                     }, (FileData imgfile) => {
                         using (var img = new CalBlobAQ2(ui, imgfile)) {
                             ui.Export2Bitmap(img.BitmapMarkup, img.BitmapResult, $"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAQ2\\{img.OutName}.jpe", ui.ExportDetailSwitch);
                             progress.Increment(ui, $"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAQ2.csv", img.getResult);
                         }
                     });
                 });
             }
         }
     } catch { throw new Exception("Error encountered during batch airspace quantification."); }
 }
 //public static async Task<bool> Load(this DockingManager dockingManager, UISettings ui, string filename = "LastSaved.xlayout")
 //{
 //	ui.ShowBusySign("Saving Settings...");
 //	try {
 //		var serializer = new XmlLayoutSerializer(dockingManager);
 //		using (var stream = new StreamReader(filename)) { serializer.Deserialize(stream); }
 //		ui.StopBusySign(); return true;
 //	} catch { ui.StopBusySign(); MessageBox.Show("Failed to load the selected layout!", "Error", MessageBoxButton.OK, MessageBoxImage.Error); return false; }
 //}
 public static async Task <bool> LoadCrypt(this DockingManager dockingManager, UISettings ui, string filename = "LastSaved.xlayout")
 {
     ui.ShowBusySign("Saving Settings...");
     try {
         var deserializer = new XmlLayoutSerializer(dockingManager);
         using (var fs = new FileStream(filename, FileMode.Open)) {
             using (var sr = new StreamReader(fs)) {
                 var    aUE = new UnicodeEncoding();
                 byte[] key = aUE.GetBytes("password");
                 using (var RMCrypto = new RijndaelManaged()) {
                     using (var cs = new CryptoStream(fs, RMCrypto.CreateDecryptor(key, key), CryptoStreamMode.Read)) {
                         deserializer.Deserialize(cs);
                     }
                 }
             }
         }
         return(true);
     } catch {
         MessageBox.Show("Failed to load the selected layout!", "Error", MessageBoxButton.OK, MessageBoxImage.Error);
         return(false);
     } finally { ui.StopBusySign(); }
 }
Exemple #6
0
        public Binarize(UISettings ui, FileData file) : base(ui, file)
        {
            try {
                Invert AFinvert = new Invert();
                switch (ui.ThresholdIndex)         // threshold method selection "Global mean" / "Local adaptive"
                {
                case 0:                            // Global
                    if (ui.ThreshGlobalIsAbsolute) // use absolute
                    {
                        Threshold AFglobalbinary = new Threshold(ui.ThreshGlobalAbsolute);
                        UnmanagedBlackWhite = AFglobalbinary.Apply(UnmanagedGray);
                    }
                    else                                 // use relative
                    {
                        ImageStatistics stats          = new ImageStatistics(UnmanagedGray, AFinvert.Apply(UnmanagedExclude));
                        Threshold       AFglobalbinary = new Threshold(stats.Gray.Center2QuantileValue(1.0d * ui.ThreshGlobalRelative / 255.0d));
                        UnmanagedBlackWhite = AFglobalbinary.Apply(UnmanagedGray);
                    }
                    break;

                case 1:                         // Local
                    BradleyLocalThresholdingX AFlocalbinary = new BradleyLocalThresholdingX()
                    {
                        PixelBrightnessDifferenceLimit = ui.ThreshLocalBrightnessDifference,
                        WindowSize = ui.ThreshLocalWindowSize, UpperLimit = 250
                    };
                    UnmanagedBlackWhite = AFlocalbinary.Apply(UnmanagedGray);
                    break;
                }
                if (ui.FillHoleAirspaceSwitch && ui.FillHoleAirspace != 0)                 // fill holes of airspaces
                {
                    FillHoles AFfillinair = new FillHoles()
                    {
                        CoupledSizeFiltering = true, MaxHoleHeight = ui.FillHoleAirspace, MaxHoleWidth = ui.FillHoleAirspace
                    };
                    //FillHolesArea AFfillinair=new FillHolesArea() { MaxHoleArea=ui.FillHoleAirspace };
                    AFfillinair.ApplyInPlace(UnmanagedBlackWhite);
                }
                UnmanagedBlackWhite = AFinvert.Apply(UnmanagedBlackWhite);
                if (ui.FillHoleTissueSwitch && ui.FillHoleTissue != 0)                 // fill holes of tissue
                {
                    FillHoles AFfillintissue = new FillHoles()
                    {
                        CoupledSizeFiltering = true, MaxHoleHeight = ui.FillHoleTissue, MaxHoleWidth = ui.FillHoleTissue
                    };
                    //FillHolesArea AFfillintissue=new FillHolesArea() { MaxHoleArea=ui.FillHoleTissue };
                    AFfillintissue.ApplyInPlace(UnmanagedBlackWhite);
                }
                if (ui.MorphoDilateSwitch && ui.MorphoDilate != 0)               // Morphological Dilate
                {
                    int n = (Math.Max(ui.MorphoDilate, 0) * 2 + 1); short[,] morphmatrix = new short[n, n];
                    for (int i = 0; i < n; i++)
                    {
                        for (int j = 0; j < n; j++)
                        {
                            morphmatrix[i, j] = 1;
                        }
                    }
                    Dilatation AFdilate = new Dilatation(morphmatrix);
                    AFdilate.ApplyInPlace(UnmanagedBlackWhite);
                }
                if (ui.MorphoErodeSwitch && ui.MorphoErode != 0)               // Morphological Erode

                {
                    int n = (Math.Max(ui.MorphoErode, 0) * 2 + 1); short[,] morphmatrix = new short[n, n];
                    for (int i = 0; i < n; i++)
                    {
                        for (int j = 0; j < n; j++)
                        {
                            morphmatrix[i, j] = 1;
                        }
                    }
                    Erosion AFerode = new Erosion(morphmatrix);
                    AFerode.ApplyInPlace(UnmanagedBlackWhite);
                }
                if (ui.ExcludeColorSwitch)
                {
                    NonParen_SumArea = ui.um2px2 * UnmanagedExclude.NonBlackArea();
                }
                if (ui.BlobMinSwitch)
                {
                    Low_Threshold = Math.Pow(10.0d, ui.BlobMin) - 1;
                }
                else
                {
                    Low_Threshold = 0.0d;
                }
                if (ui.BlobMaxSwitch)
                {
                    High_Threshold = Math.Pow(10.0d, ui.BlobMax) - 1;
                }
                else
                {
                    High_Threshold = int.MaxValue;
                }

                if (ui.BlobMinSwitch || ui.BlobMaxSwitch)
                {
                    Merge       AFmerge1  = new Merge(UnmanagedExclude);
                    ExcludeSize AFexcsize = new ExcludeSize()
                    {
                        Low = (int)Math.Round(Low_Threshold / ui.um2px2), High = (int)Math.Round(Math.Min(int.MaxValue, High_Threshold / ui.um2px2))
                    };
                    Merge AFmerge2 = new Merge(AFexcsize.Apply(AFinvert.Apply(AFmerge1.Apply(UnmanagedBlackWhite))));
                    AFmerge2.ApplyInPlace(UnmanagedExclude);
                    Low_SumArea  = ui.um2px2 * AFexcsize.LowCount;
                    High_SumArea = ui.um2px2 * AFexcsize.HighCount;
                }
            } catch { throw new Exception("Error Occured During Binarization"); }
        }
Exemple #7
0
        public CalPAQ1(UISettings ui, FileData f, CalPAC categ = null) : base(ui, f)
        {
            try {
                // low-alv-des-high cut
                if (categ != null)                 // use alv des cutoffs from categorize class
                {
                    Alv_Log_Size = categ.p1Mean;
                    //Sac_Log_Size=categ.p2Mean;
                    //Des_Log_Size=categ.p3Mean;
                    Alv_Size = Math.Pow(10.0d, categ.p1Mean) - 1;
                    //Sac_size=Math.Pow(10.0d, categ.p2Mean)-1;
                    //Des_size=Math.Pow(10.0d, categ.p3Mean)-1;
                    //Alv_Cut=Math.Pow(10.0d, categ.Alv_Log_Cut)-1;
                    DucDes_Threshold = Math.Pow(10.0d, categ.c1_DucDes_CI95_1tail) - 1;
                    //Alv_cut=Alv_Cut/px2um2;
                }
                else                     // alv des cutoffs from ui
                {
                    DucDes_Threshold = Math.Pow(10.0d, ui.BlobDes) - 1;
                }
                DucDes_Log_Threshold = Math.Log10(DucDes_Threshold + 1);

                AreaComponentsLabeling aclabel = new AreaComponentsLabeling()
                {
                    Low  = (int)Math.Round(Low_Threshold / ui.um2px2),
                    High = (int)Math.Round(Math.Min(int.MaxValue, High_Threshold / ui.um2px2)),
                    Alv  = (int)Math.Round(DucDes_Threshold / ui.um2px2),                // use Des_cut to elliminate Sac color
                    Des  = (int)Math.Round(DucDes_Threshold / ui.um2px2)
                };
                Invert AFinvert = new Invert();
                UnmanagedResult = aclabel.Apply(AFinvert.Apply(UnmanagedBlackWhite));
                //Low_count = Low_sumArea = High_count = High_sumArea = 0;
                foreach (Blobx blob in aclabel.BlobCounter.blobs)
                {
                    if (blob.Area <= aclabel.Des)                     // alv/sac
                    {
                        AlvSac_count++; AlvSac_SumArea += ui.um2px2 * blob.Area; AlvSac_SumBoundary += ui.umpx * blob.Perimeter;
                    }
                    else                          // duct/des
                    {
                        DucDes_count++; DucDes_SumArea += ui.um2px2 * blob.Area; DucDes_SumBoundary += ui.umpx * blob.Perimeter;
                    }
                }

                Total_SumArea = ui.um2px2 * (UnmanagedMarkup.Width * UnmanagedMarkup.Height); // total area
                Lung_SumArea  = Total_SumArea - Low_SumArea - High_SumArea;                   // lung area
                Paren_SumArea = Lung_SumArea - NonParen_SumArea;                              // parenchymal area
                Tis_SumArea   = Paren_SumArea - AlvSac_SumArea - DucDes_SumArea;              // septum tissue

                AlvSac_Count    = 1000.0d * 1000.0d * AlvSac_count / Paren_SumArea;
                DucDes_Count    = 1000.0d * 1000.0d * DucDes_count / Paren_SumArea;
                AlvSac_Boundary = 1.0d * AlvSac_SumBoundary / Paren_SumArea;
                DucDes_Boundary = 1.0d * DucDes_SumBoundary / Paren_SumArea;
                AlvSac_Fraction = 1.0d * AlvSac_SumArea / Paren_SumArea;
                DucDes_Fraction = 1.0d * DucDes_SumArea / Paren_SumArea;           // is still better to divide by paren area

                Tis_Fraction     = 1.0d - AlvSac_Fraction - DucDes_Fraction;
                DucDes_Alv_Ratio = DucDes_Fraction / AlvSac_Fraction;

                StringBuilder header = new StringBuilder();
                header.Append($"{FileName}  ps: {ui.PixelScale:G2}/{ui.ResizeValue:G2} px/um" + $"\nduc/des thres:{DucDes_Log_Threshold:0.00} log\x2081\x2080µm\xB2");
                header.Append($"\nlung: {Lung_SumArea:G2}µm\xB2, {(1.0d*Lung_SumArea/Total_SumArea):0%} image (blw: {Low_SumArea/Total_SumArea:0%} ovr: {1.0d*High_SumArea/Total_SumArea:0%})");
                header.Append($"\nparenchyma: {Paren_SumArea:G2}µm\xB2, {(Paren_SumArea/Lung_SumArea):0%} lung (exc: {1.0d*NonParen_SumArea/Total_SumArea:0%})");
                header.Append($"\nseptum: {Tis_SumArea:G2}µm\xB2, {Tis_SumArea/Paren_SumArea:0%} paren (airspace: {(AlvSac_SumArea+DucDes_SumArea)/Total_SumArea:0%})");

                StringBuilder footer = new StringBuilder();
                if (Math.Abs(Alv_Size) > 0.01d)
                {
                    footer.Append($" AS:{Alv_Size:G2} (Size, µm\xB2)");
                }
                footer.Append($"\nASC:{AlvSac_Count:G2} DC:{DucDes_Count:G2} (Count\x2090: 1/mm\xB2)"
                              + $"\nASB:{AlvSac_Boundary:G2} DB:{DucDes_Boundary:G2} (Boundary\x2090, 1/µm)"
                              + $"\nASF:{AlvSac_Fraction:0%} DF:{DucDes_Fraction:0%} (Area\x2090 Fraction, %)"
                              + $"\nTF:{Tis_Fraction:0.0%} D2A:{DucDes_Alv_Ratio:F2} (Fraction, Ratio)");

                UnmanagedMarkup = UnmanagedImage.FromManagedImage(AddBlobText(UnmanagedMarkup.ToManagedImage(false), Color.Black, $"{header}", $"{footer}", null, null,     // ,blobs, blobDes.ToArray()
                                                                              (int)Math.Round(0.02d * UnmanagedMarkup.Width * Math.Sqrt(ui.ExportDetailRatio))));
                UnmanagedResult = UnmanagedImage.FromManagedImage(AddBlobText(UnmanagedResult.ToManagedImage(false), Color.PaleGreen, $"{header}", $"{footer}", null, null, // ,blobs, blobDes.ToArray()
                                                                              (int)Math.Round(0.02d * UnmanagedMarkup.Width * Math.Sqrt(ui.ExportDetailRatio))));
            } catch { throw new Exception("Error Occured During Airspace Quantification"); }
        }
        public CalParen(UISettings ui, FileData file) : base(ui, file)
        {
            Merge AFmerge = new Merge(UnmanagedExclude);

            AFmerge.ApplyInPlace(UnmanagedBlackWhite);
        }
        public CalPAC(UISettings ui, string grouping, int n, List <double> AreaPool)
        {
            try {
                //Stopwatch sw = new Stopwatch();
                //sw.Start();

                Grouping = grouping; N = n;
                AreaPool.Sort();                 // for weight sampling
                //double px2um2=ui.PixelScale*ui.PixelScale/ui.ResizeRatio/ui.ResizeRatio;
                var    CountDis = new List <double[]>();
                double AreaSum  = 0.0d;
                for (int i = 0; i < AreaPool.Count; i++)
                {
                    double[] data = new double[1];
                    data[0] = Math.Log10(AreaPool[i] + 1);                 //data[1] = (double)(mFull[i]/100.0d);
                    CountDis.Add(data);
                    AreaSum += AreaPool[i];
                }

                ///1-Dist fitted with 1-Population
                GaussianMixtureModel gmm1 = new GaussianMixtureModel(1);
                gmm1Fit      = gmm1.Compute(CountDis.ToArray());
                p1Mean       = gmm1.Gaussians[0].Mean[0];
                p1Covariance = gmm1.Gaussians[0].Covariance[0, 0];
                p1Proportion = gmm1.Gaussians[0].Proportion;
                ///1-Dist fitted with 2-Populations / take the larger proportion
                //GaussianMixtureModel gmm1=new GaussianMixtureModel(2);
                //gmm1Fit=gmm1.Compute(countDis.ToArray());
                //int m=(gmm1.Gaussians[0].Proportion>gmm1.Gaussians[1].Proportion) ? 0 : 1;
                //p1Mean=gmm1.Gaussians[m].Mean[0];
                //p1Covariance=gmm1.Gaussians[m].Covariance[0, 0];
                //p1Proportion=gmm1.Gaussians[m].Proportion;

                ///List<double[]> areaDis = WeightExpansion(AreaPool, divider=10.0d);
                //var AreaDis = new List<double[]>();
                //double divider = 10.0d;
                //for (int i = 0; i<AreaPool.Count; i++) {
                //	double[] data = new double[1];
                //	data[0]=Math.Log10(AreaPool[i]+1);
                //	for (int r = 0; r<Math.Round(AreaPool[i]/divider); r++) { AreaDis.Add(data); }
                //}

                ///List<double[]> areaDis = WeightSampling(AreaPool, AreaSum, Math.Max((int)Math.Round(AreaSum/5000.0d), 1)); // sample every divided by 5000 evenly or every one if not too large
                var AreaDis = new List <double[]>();
                int askip   = (int)Math.Round(Math.Max(AreaSum / 5000.0d, 1));
                for (int sn = 0; sn < (int)Math.Floor(AreaSum); sn += askip)               // sample number
                {
                    double s = 0.0d;
                    for (int bi = 0; bi < AreaPool.Count; bi++)
                    {
                        s += AreaPool[bi];
                        if (s > sn)
                        {
                            double[] data = new double[1];
                            data[0] = Math.Log10(AreaPool[bi] + 1);
                            AreaDis.Add(data); break;
                        }
                    }
                }

                ///2-Dist fitted with 2-Populations /
                GaussianMixtureModel gmm2 = new GaussianMixtureModel(2);
                gmm2Fit = gmm2.Compute(AreaDis.ToArray());
                int a = (gmm2.Gaussians[0].Mean[0] < gmm2.Gaussians[1].Mean[0]) ? 0 : 1;
                p2Mean       = gmm2.Gaussians[a].Mean[0];
                p2Covariance = gmm2.Gaussians[a].Covariance[0, 0];
                p2Proportion = gmm2.Gaussians[a].Proportion;
                p3Mean       = gmm2.Gaussians[1 - a].Mean[0];
                p3Covariance = gmm2.Gaussians[1 - a].Covariance[0, 0];
                p3Proportion = gmm2.Gaussians[1 - a].Proportion;

                DistCount = Bucketize(CountDis);
                DistArea  = Bucketize(AreaDis);

                //sw.Stop();
                //Debug.Write(sw.Elapsed);
            } catch { throw new Exception("Error Occured During Airspace Categorization"); }
        }
Exemple #10
0
        public static async Task BatchAP2(this UISettings ui, List <FileData> listfiles)
        {
            try {
                Directory.CreateDirectory($"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAP");                 // profile
                using (var file = File.AppendText($"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAP.csv")) {
                    file.Write("\n" + CalPAC.getEntryNote + "\n" + CalPAC.getDescription + "\n" + CalPAC.getHeader);
                }
                Directory.CreateDirectory($"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAQ2");                 // quantify with 2-dist
                using (var file = File.AppendText($"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAQ2.csv")) {
                    file.Write("\n" + CalBlobAQ2.getEntryNote + "\n" + CalBlobAQ2.getDescription + "\n" + CalBlobAQ2.getHeader);
                }

                switch (ui.ProfilingIndex)
                {
                case 0: foreach (FileData f in listfiles)
                    {
                        f.Grouping = "All";
                    }
                    break;

                case 1: foreach (FileData f in listfiles)
                    {
                        f.Grouping = f.Group;
                    }
                    break;

                case 2: foreach (FileData f in listfiles)
                    {
                        f.Grouping = f.Group + "-" + f.Individual;
                    }
                    break;

                case 3: foreach (FileData f in listfiles)
                    {
                        f.Grouping = f.OutName;
                    }
                    break;
                }
                var filegroups = listfiles.GroupBy(g => g.Grouping).Select(l => l.ToList()).ToList();
                var progress   = new Progress($"Analyzing {listfiles.Count} files in {filegroups.Count} groups ...", listfiles.Count * 2 + filegroups.Count); // 2X the work + additional categorization
                using (ui.cts = new CancellationTokenSource()) {
                    foreach (List <FileData> filegroup in filegroups)                                                                                         // Process each group
                    {
                        if (!ui.MultiThreadingSwitch)                                                                                                         // false - single thread
                        {
                            var areaPool = new ConcurrentBag <double>();
                            foreach (FileData imgfile in filegroup)
                            {
                                using (var img = await Task <CalPAP> .Factory.StartNew(() => { return(new CalPAP(ui, imgfile, ref areaPool)); })) {
                                    ui.UpdateImageSource(img.BitmapOriginal, img.BitmapMarkup, img.BitmapExclude, img.BitmapGray, img.BitmapBlackWhite, img.BitmapResult);
                                    ui.Export2Bitmap(img.BitmapMarkup, img.BitmapResult, $"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAP\\{img.OutName}.jpe", ui.ExportDetailSwitch);
                                    progress.Increment(ui);                                     //incremenet without writing result
                                }
                                ui.cts.Token.ThrowIfCancellationRequested();
                            }

                            var categ = await Task <CalPAC> .Factory.StartNew(() => { return(new CalPAC(ui, filegroup[0].Grouping, filegroup.Count, areaPool.ToList())); });

                            ui.Graph1 = categ.ToOxyPlot(1);
                            ui.Graph1.ExportPng($"{ui.WorkDirectory}\\{ui.ProjectName}\\{filegroup[0].Grouping}_1-Count.png");
                            ui.Graph2 = categ.ToOxyPlot(2);
                            ui.Graph2.ExportPng($"{ui.WorkDirectory}\\{ui.ProjectName}\\{filegroup[0].Grouping}_2-Area.png");
                            ui.Graph3 = categ.ToOxyPlot(3);
                            ui.Graph3.ExportPng($"{ui.WorkDirectory}\\{ui.ProjectName}\\{filegroup[0].Grouping}_3-Count&Area.png");
                            progress.Increment(ui, $"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAP.csv", categ.getResult);
                            ui.cts.Token.ThrowIfCancellationRequested();

                            foreach (FileData imgfile in filegroup)
                            {
                                using (var img = await Task <CalBlobAQ2> .Factory.StartNew(() => { return(new CalBlobAQ2(ui, imgfile, categ)); })) {
                                    ui.UpdateImageSource(img.BitmapOriginal, img.BitmapMarkup, img.BitmapExclude, img.BitmapGray, img.BitmapBlackWhite, img.BitmapResult);
                                    ui.Export2Bitmap(img.BitmapMarkup, img.BitmapResult, $"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAQ2\\{img.OutName}.png", ui.ExportDetailSwitch);
                                    progress.Increment(ui, $"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAQ2.csv", img.getResult);
                                }
                                ui.cts.Token.ThrowIfCancellationRequested();
                            }
                        }
                        else                             // true - open multi thread pool
                        {
                            var categ = await Task <CalPAC> .Factory.StartNew(() => {
                                var areaPool = new ConcurrentBag <double>();
                                Parallel.ForEach(filegroup, new ParallelOptions()
                                {
                                    CancellationToken = ui.cts.Token, MaxDegreeOfParallelism = Environment.ProcessorCount
                                }, (FileData imgfile) => {
                                    using (var img = new CalPAP(ui, imgfile, ref areaPool)) {
                                        ui.Export2Bitmap(img.BitmapMarkup, img.BitmapResult, $"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAP\\{img.OutName}.jpe", ui.ExportDetailSwitch);
                                        progress.Increment(ui);                                         //incremenet without writing result
                                    }
                                });
                                return(new CalPAC(ui, filegroup[0].Grouping, filegroup.Count, areaPool.ToList()));
                            }); ui.cts.Token.ThrowIfCancellationRequested();

                            ui.Graph1 = categ.ToOxyPlot(1);
                            ui.Graph1.ExportPng($"{ui.WorkDirectory}\\{ui.ProjectName}\\{filegroup[0].Grouping}_1-Count.png");
                            ui.Graph2 = categ.ToOxyPlot(2);
                            ui.Graph2.ExportPng($"{ui.WorkDirectory}\\{ui.ProjectName}\\{filegroup[0].Grouping}_2-Area.png");
                            ui.Graph3 = categ.ToOxyPlot(3);
                            ui.Graph3.ExportPng($"{ui.WorkDirectory}\\{ui.ProjectName}\\{filegroup[0].Grouping}_3-Count&Area.png");
                            progress.Increment(ui, $"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAP.csv", categ.getResult);
                            ui.cts.Token.ThrowIfCancellationRequested();

                            await Task.Factory.StartNew(() => {
                                Parallel.ForEach(filegroup, new ParallelOptions()
                                {
                                    CancellationToken = ui.cts.Token, MaxDegreeOfParallelism = Environment.ProcessorCount
                                }, (FileData imgfile) => {
                                    using (var img = new CalBlobAQ2(ui, imgfile, categ)) {
                                        ui.Export2Bitmap(img.BitmapMarkup, img.BitmapResult, $"{ui.WorkDirectory}\\{ui.ProjectName}\\LMAQ2\\{img.OutName}.jpe", ui.ExportDetailSwitch);
                                        progress.Increment(ui, $"{ui.WorkDirectory}\\{ui.ProjectName}\\_{ui.ProjectName}_LMAQ2.csv", img.getResult);
                                    }
                                });
                            });

                            ui.cts.Token.ThrowIfCancellationRequested();
                        }
                    }
                }
            } catch { throw new Exception("Error encountered during batch airspace profiling."); }
        }