private static void solve_epsilon_svr(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si) { int l = prob.Lenght; double[] alpha2 = new double[2 * l]; double[] linear_term = new double[2 * l]; sbyte[] y = new sbyte[2 * l]; int i; for (i = 0; i < l; i++) { alpha2[i] = 0; linear_term[i] = param.P - prob.Y[i]; y[i] = 1; alpha2[i + l] = 0; linear_term[i + l] = param.P + prob.Y[i]; y[i + l] = -1; } Solver s = new Solver(); s.Solve(2 * l, new SvrQ(prob, param), linear_term, y, alpha2, param.C, param.C, param.Eps, si, param.Shrinking); double sum_alpha = 0; for (i = 0; i < l; i++) { alpha[i] = alpha2[i] - alpha2[i + l]; sum_alpha += Math.Abs(alpha[i]); } Svm.info("nu = " + sum_alpha / (param.C * l) + "\n"); }
protected void reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if (_activeSize == _length) { return; } int i, j; int nr_free = 0; for (j = _activeSize; j < _length; j++) { _g[j] = _gBar[j] + _p[j]; } for (j = 0; j < _activeSize; j++) { if (is_free(j)) { nr_free++; } } if (2 * nr_free < _activeSize) { Svm.info("\nWARNING: using -h 0 may be faster\n"); } if (nr_free * _length > 2 * _activeSize * (_length - _activeSize)) { for (i = _activeSize; i < _length; i++) { double[] Q_i = _q.GetQ(i, _activeSize); for (j = 0; j < _activeSize; j++) { if (is_free(j)) { _g[i] += _alpha[j] * Q_i[j]; } } } } else { for (i = 0; i < _activeSize; i++) { if (is_free(i)) { double[] Q_i = _q.GetQ(i, _length); double alpha_i = _alpha[i]; for (j = _activeSize; j < _length; j++) { _g[j] += alpha_i * Q_i[j]; } } } } }
//from Svm.svm_predict_probability public double PredictProbability(SvmNode[] x, double[] prob_estimates) { if (!SvmType.IsSVC() || ProbA == null || ProbB == null) { return(Predict(x)); } int nr_class = NrClass; double[] dec_values = new double[nr_class * (nr_class - 1) / 2]; PredictValues(x, dec_values); double min_prob = 1e-7; double[][] pairwise_prob = new double[nr_class][]; for (int i = 0; i < nr_class; i++) { pairwise_prob[i] = new double[nr_class]; } int k = 0; for (int i = 0; i < nr_class; i++) { for (int j = i + 1; j < nr_class; j++) { pairwise_prob[i][j] = Math.Min(Math.Max(Svm.sigmoid_predict(dec_values[k], ProbA[k], ProbB[k]), min_prob), 1 - min_prob); pairwise_prob[j][i] = 1 - pairwise_prob[i][j]; k++; } } Svm.multiclass_probability(nr_class, pairwise_prob, prob_estimates); int prob_max_idx = 0; for (int i = 1; i < nr_class; i++) { if (prob_estimates[i] > prob_estimates[prob_max_idx]) { prob_max_idx = i; } } return(Label[prob_max_idx]); }
private static void solve_c_svc(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si, double Cp, double Cn) { int l = prob.Lenght; double[] minus_ones = new double[l]; sbyte[] y = new sbyte[l]; for (int i = 0; i < l; i++) { alpha[i] = 0; minus_ones[i] = -1; if (prob.Y[i] > 0) { y[i] = +1; } else { y[i] = -1; } } Solver s = new Solver(); s.Solve(l, new SvcQ(prob, param, y), minus_ones, y, alpha, Cp, Cn, param.Eps, si, param.Shrinking); double sum_alpha = 0; for (int i = 0; i < l; i++) { sum_alpha += alpha[i]; } if (Cp == Cn) { Svm.info("nu = " + sum_alpha / (Cp * prob.Lenght) + "\n"); } for (int i = 0; i < l; i++) { alpha[i] *= y[i]; } }
// Return parameter of a Laplace distribution private static double svm_svr_probability(SvmProblem prob, SvmParameter param) { int i; int nr_fold = 5; double[] ymv = new double[prob.Lenght]; double mae = 0; var newparam = (SvmParameter)param.Clone(); newparam.Probability = false; CrossValidation(prob, newparam, nr_fold, ymv); for (i = 0; i < prob.Lenght; i++) { ymv[i] = prob.Y[i] - ymv[i]; mae += Math.Abs(ymv[i]); } mae /= prob.Lenght; double std = Math.Sqrt(2 * mae * mae); int count = 0; mae = 0; for (i = 0; i < prob.Lenght; i++) { if (Math.Abs(ymv[i]) > 5 * std) { count = count + 1; } else { mae += Math.Abs(ymv[i]); } } mae /= (prob.Lenght - count); Svm.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\n"); return(mae); }
private static void solve_nu_svr(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si) { int l = prob.Lenght; double C = param.C; double[] alpha2 = new double[2 * l]; double[] linear_term = new double[2 * l]; sbyte[] y = new sbyte[2 * l]; int i; double sum = C * param.Nu * l / 2; for (i = 0; i < l; i++) { alpha2[i] = alpha2[i + l] = Math.Min(sum, C); sum -= alpha2[i]; linear_term[i] = -prob.Y[i]; y[i] = 1; linear_term[i + l] = prob.Y[i]; y[i + l] = -1; } var s = new SolverNu(); s.Solve(2 * l, new SvrQ(prob, param), linear_term, y, alpha2, C, C, param.Eps, si, param.Shrinking); Svm.info("epsilon = " + (-si.R) + "\n"); for (i = 0; i < l; i++) { alpha[i] = alpha2[i] - alpha2[i + l]; } }
public virtual void Solve(int length, QMatrix Q, double[] p_, sbyte[] y_, double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, bool shrinking) { this._length = length; this._q = Q; _qd = Q.GetQD(); _p = (double[])p_.Clone(); _y = (sbyte[])y_.Clone(); _alpha = (double[])alpha_.Clone(); this._cp = Cp; this._cn = Cn; this._eps = eps; this._unshrink = false; // initialize alpha_status { _alphaStatus = new BoundType[length]; for (int i = 0; i < length; i++) { UpdateAlphaStatus(i); } } // initialize active set (for shrinking) { _activeSet = new int[length]; for (int i = 0; i < length; i++) { _activeSet[i] = i; } _activeSize = length; } // initialize gradient { _g = new double[length]; _gBar = new double[length]; int i; for (i = 0; i < length; i++) { _g[i] = _p[i]; _gBar[i] = 0; } for (i = 0; i < length; i++) { if (!is_lower_bound(i)) { double[] Q_i = Q.GetQ(i, length); double alpha_i = _alpha[i]; int j; for (j = 0; j < length; j++) { _g[j] += alpha_i * Q_i[j]; } if (is_upper_bound(i)) { for (j = 0; j < length; j++) { _gBar[j] += GetC(i) * Q_i[j]; } } } } } // optimization step int iter = 0; int max_iter = Math.Max(10000000, length > int.MaxValue / 100 ? int.MaxValue : 100 * length); int counter = Math.Min(length, 1000) + 1; int[] working_set = new int[2]; while (iter < max_iter) { // show progress and do shrinking if (--counter == 0) { counter = Math.Min(length, 1000); if (shrinking) { do_shrinking(); } Svm.info("."); } if (select_working_set(working_set) != 0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check _activeSize = length; Svm.info("*"); if (select_working_set(working_set) != 0) { break; } else { counter = 1; // do shrinking next iteration } } int i = working_set[0]; int j = working_set[1]; ++iter; // update alpha[i] and alpha[j], handle bounds carefully double[] Q_i = Q.GetQ(i, _activeSize); double[] Q_j = Q.GetQ(j, _activeSize); double C_i = GetC(i); double C_j = GetC(j); double old_alpha_i = _alpha[i]; double old_alpha_j = _alpha[j]; if (_y[i] != _y[j]) { double quad_coef = _qd[i] + _qd[j] + 2 * Q_i[j]; if (quad_coef <= 0) { quad_coef = 1e-12; } double delta = (-_g[i] - _g[j]) / quad_coef; double diff = _alpha[i] - _alpha[j]; _alpha[i] += delta; _alpha[j] += delta; if (diff > 0) { if (_alpha[j] < 0) { _alpha[j] = 0; _alpha[i] = diff; } } else { if (_alpha[i] < 0) { _alpha[i] = 0; _alpha[j] = -diff; } } if (diff > C_i - C_j) { if (_alpha[i] > C_i) { _alpha[i] = C_i; _alpha[j] = C_i - diff; } } else { if (_alpha[j] > C_j) { _alpha[j] = C_j; _alpha[i] = C_j + diff; } } } else { double quad_coef = _qd[i] + _qd[j] - 2 * Q_i[j]; if (quad_coef <= 0) { quad_coef = 1e-12; } double delta = (_g[i] - _g[j]) / quad_coef; double sum = _alpha[i] + _alpha[j]; _alpha[i] -= delta; _alpha[j] += delta; if (sum > C_i) { if (_alpha[i] > C_i) { _alpha[i] = C_i; _alpha[j] = sum - C_i; } } else { if (_alpha[j] < 0) { _alpha[j] = 0; _alpha[i] = sum; } } if (sum > C_j) { if (_alpha[j] > C_j) { _alpha[j] = C_j; _alpha[i] = sum - C_j; } } else { if (_alpha[i] < 0) { _alpha[i] = 0; _alpha[j] = sum; } } } // update G double delta_alpha_i = _alpha[i] - old_alpha_i; double delta_alpha_j = _alpha[j] - old_alpha_j; for (int k = 0; k < _activeSize; k++) { _g[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j; } // update alpha_status and G_bar bool ui = is_upper_bound(i); bool uj = is_upper_bound(j); UpdateAlphaStatus(i); UpdateAlphaStatus(j); //int k; if (ui != is_upper_bound(i)) { Q_i = Q.GetQ(i, length); if (ui) { for (int k = 0; k < length; k++) { _gBar[k] -= C_i * Q_i[k]; } } else { for (int k = 0; k < length; k++) { _gBar[k] += C_i * Q_i[k]; } } } if (uj != is_upper_bound(j)) { Q_j = Q.GetQ(j, length); if (uj) { for (int k = 0; k < length; k++) { _gBar[k] -= C_j * Q_j[k]; } } else { for (int k = 0; k < length; k++) { _gBar[k] += C_j * Q_j[k]; } } } } if (iter >= max_iter) { if (_activeSize < length) { // reconstruct the whole gradient to calculate objective value reconstruct_gradient(); _activeSize = length; Svm.info("*"); } Svm.info("\nWARNING: reaching max number of iterations"); } // calculate rho si.Rho = calculate_rho(); // calculate objective value double v = 0; for (int i = 0; i < length; i++) { v += _alpha[i] * (_g[i] + _p[i]); } si.Obj = v / 2; // put back the solution for (int i = 0; i < length; i++) { alpha_[_activeSet[i]] = _alpha[i]; } si.UpperBoundP = Cp; si.UpperBoundN = Cn; Svm.info("\noptimization finished, #iter = " + iter + "\n"); }
// // Interface functions // public static SvmModel Train(SvmProblem prob, SvmParameter param) { var model = new SvmModel(); model.Param = param; if (param.SvmType.IsSVROrOneClass()) { // regression or one-class-svm model.NrClass = 2; model.Label = null; model.SupportVectorsNumbers = null; model.ProbA = null; model.ProbB = null; model.SupportVectorsCoefficients = new double[1][]; if (param.Probability && param.SvmType.IsSVR()) { model.ProbA = new double[1]; model.ProbA[0] = svm_svr_probability(prob, param); } DecisionFunction f = svm_train_one(prob, param, 0, 0); model.Rho = new double[1]; model.Rho[0] = f.Rho; int nSV = 0; int i; for (i = 0; i < prob.Lenght; i++) { if (Math.Abs(f.Alpha[i]) > 0) { ++nSV; } } model.TotalSupportVectorsNumber = nSV; model.SupportVectors = new SvmNode[nSV][]; model.SupportVectorsCoefficients[0] = new double[nSV]; int j = 0; for (i = 0; i < prob.Lenght; i++) { if (Math.Abs(f.Alpha[i]) > 0) { model.SupportVectors[j] = prob.X[i]; model.SupportVectorsCoefficients[0][j] = f.Alpha[i]; ++j; } } } else { // classification int l = prob.Lenght; int[] perm = new int[l]; int nr_class; int[] label; int[] start; int[] count; // group training data of the same class svm_group_classes(prob, out nr_class, out label, out start, out count, perm); if (nr_class == 1) { Svm.info("WARNING: training data in only one class. See README for details.\n"); } SvmNode[][] x = new SvmNode[l][]; int i; for (i = 0; i < l; i++) { x[i] = prob.X[perm[i]]; } // calculate weighted C double[] weighted_C = new double[nr_class]; for (i = 0; i < nr_class; i++) { weighted_C[i] = param.C; } for (i = 0; i < param.WeightsCount; i++) { int j; for (j = 0; j < nr_class; j++) { if (param.WeightLabel[i] == label[j]) { break; } } if (j == nr_class) { System.Diagnostics.Debug.WriteLine("WARNING: class label " + param.WeightLabel[i] + " specified in weight is not found\n"); } else { weighted_C[j] *= param.Weight[i]; } } // train k*(k-1)/2 models var nonzero = new bool[l]; for (i = 0; i < l; i++) { nonzero[i] = false; } var f = new DecisionFunction[nr_class * (nr_class - 1) / 2]; double[] probA = null, probB = null; if (param.Probability) { probA = new double[nr_class * (nr_class - 1) / 2]; probB = new double[nr_class * (nr_class - 1) / 2]; } int p = 0; for (i = 0; i < nr_class; i++) { for (int j = i + 1; j < nr_class; j++) { int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; var subprobLenght = ci + cj; var sub_prob = new SvmProblem { X = new SvmNode[subprobLenght][], Y = new double[subprobLenght] }; int k; for (k = 0; k < ci; k++) { sub_prob.X[k] = x[si + k]; sub_prob.Y[k] = +1; } for (k = 0; k < cj; k++) { sub_prob.X[ci + k] = x[sj + k]; sub_prob.Y[ci + k] = -1; } if (param.Probability) { double[] probAB = new double[2]; svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB); probA[p] = probAB[0]; probB[p] = probAB[1]; } f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]); for (k = 0; k < ci; k++) { if (!nonzero[si + k] && Math.Abs(f[p].Alpha[k]) > 0) { nonzero[si + k] = true; } } for (k = 0; k < cj; k++) { if (!nonzero[sj + k] && Math.Abs(f[p].Alpha[ci + k]) > 0) { nonzero[sj + k] = true; } } ++p; } } // build output model.NrClass = nr_class; model.Label = new int[nr_class]; for (i = 0; i < nr_class; i++) { model.Label[i] = label[i]; } model.Rho = new double[nr_class * (nr_class - 1) / 2]; for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model.Rho[i] = f[i].Rho; } if (param.Probability) { model.ProbA = new double[nr_class * (nr_class - 1) / 2]; model.ProbB = new double[nr_class * (nr_class - 1) / 2]; for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model.ProbA[i] = probA[i]; model.ProbB[i] = probB[i]; } } else { model.ProbA = null; model.ProbB = null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.SupportVectorsNumbers = new int[nr_class]; for (i = 0; i < nr_class; i++) { int nSV = 0; for (int j = 0; j < count[i]; j++) { if (nonzero[start[i] + j]) { ++nSV; ++nnz; } } model.SupportVectorsNumbers[i] = nSV; nz_count[i] = nSV; } Svm.info("Total nSV = " + nnz + "\n"); model.TotalSupportVectorsNumber = nnz; model.SupportVectors = new SvmNode[nnz][]; p = 0; for (i = 0; i < l; i++) { if (nonzero[i]) { model.SupportVectors[p++] = x[i]; } } int[] nz_start = new int[nr_class]; nz_start[0] = 0; for (i = 1; i < nr_class; i++) { nz_start[i] = nz_start[i - 1] + nz_count[i - 1]; } model.SupportVectorsCoefficients = new double[nr_class - 1][]; for (i = 0; i < nr_class - 1; i++) { model.SupportVectorsCoefficients[i] = new double[nnz]; } p = 0; for (i = 0; i < nr_class; i++) { for (int j = i + 1; j < nr_class; j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for (k = 0; k < ci; k++) { if (nonzero[si + k]) { model.SupportVectorsCoefficients[j - 1][q++] = f[p].Alpha[k]; } } q = nz_start[j]; for (k = 0; k < cj; k++) { if (nonzero[sj + k]) { model.SupportVectorsCoefficients[i][q++] = f[p].Alpha[ci + k]; } } ++p; } } } return(model); }
private static void solve_nu_svc(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si) { int i; int l = prob.Lenght; double nu = param.Nu; sbyte[] y = new sbyte[l]; for (i = 0; i < l; i++) { if (prob.Y[i] > 0) { y[i] = +1; } else { y[i] = -1; } } double sum_pos = nu * l / 2; double sum_neg = nu * l / 2; for (i = 0; i < l; i++) { if (y[i] == +1) { alpha[i] = Math.Min(1.0, sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = Math.Min(1.0, sum_neg); sum_neg -= alpha[i]; } } double[] zeros = new double[l]; for (i = 0; i < l; i++) { zeros[i] = 0; } var s = new SolverNu(); s.Solve(l, new SvcQ(prob, param, y), zeros, y, alpha, 1.0, 1.0, param.Eps, si, param.Shrinking); double r = si.R; Svm.info("C = " + 1 / r + "\n"); for (i = 0; i < l; i++) { alpha[i] *= y[i] / r; } si.Rho /= r; si.Obj /= (r * r); si.UpperBoundP = 1 / r; si.UpperBoundN = 1 / r; }
// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng internal static void multiclass_probability(int k, double[][] r, double[] p) { int t, j; int iter = 0, max_iter = Math.Max(100, k); //double[][] Q = new double[k][k]; double[][] Q = new double[k][]; for (int i = 0; i < k; i++) { Q[i] = new double[k]; } double[] Qp = new double[k]; double pQp, eps = 0.005 / k; for (t = 0; t < k; t++) { p[t] = 1.0 / k; // Valid if k = 1 Q[t][t] = 0; for (j = 0; j < t; j++) { Q[t][t] += r[j][t] * r[j][t]; Q[t][j] = Q[j][t]; } for (j = t + 1; j < k; j++) { Q[t][t] += r[j][t] * r[j][t]; Q[t][j] = -r[j][t] * r[t][j]; } } for (iter = 0; iter < max_iter; iter++) { // stopping condition, recalculate QP,pQP for numerical accuracy pQp = 0; for (t = 0; t < k; t++) { Qp[t] = 0; for (j = 0; j < k; j++) { Qp[t] += Q[t][j] * p[j]; } pQp += p[t] * Qp[t]; } double max_error = 0; for (t = 0; t < k; t++) { double error = Math.Abs(Qp[t] - pQp); if (error > max_error) { max_error = error; } } if (max_error < eps) { break; } for (t = 0; t < k; t++) { double diff = (-Qp[t] + pQp) / Q[t][t]; p[t] += diff; pQp = (pQp + diff * (diff * Q[t][t] + 2 * Qp[t])) / (1 + diff) / (1 + diff); for (j = 0; j < k; j++) { Qp[j] = (Qp[j] + diff * Q[t][j]) / (1 + diff); p[j] /= (1 + diff); } } } if (iter >= max_iter) { Svm.info("Exceeds max_iter in multiclass_prob\n"); } }
// Platt's binary SVM Probablistic Output: an improvement from Lin et al. private static void sigmoid_train(int l, double[] dec_values, double[] labels, double[] probAB) { //double A, B; double prior1 = 0, prior0 = 0; //int i; for (int i = 0; i < l; i++) { if (labels[i] > 0) { prior1 += 1; } else { prior0 += 1; } } const int max_iter = 100; // Maximal number of iterations const double min_step = 1e-10; // Minimal step taken in line search const double sigma = 1e-12; // For numerically strict PD of Hessian const double eps = 1e-5; double hiTarget = (prior1 + 1.0) / (prior1 + 2.0); double loTarget = 1 / (prior0 + 2.0); double[] t = new double[l]; double fApB; int iter; // Initial Point and Initial Fun Value double A = 0.0; double B = Math.Log((prior0 + 1.0) / (prior1 + 1.0)); double fval = 0.0; for (int i = 0; i < l; i++) { if (labels[i] > 0) { t[i] = hiTarget; } else { t[i] = loTarget; } fApB = dec_values[i] * A + B; if (fApB >= 0) { fval += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB)); } else { fval += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB)); } } for (iter = 0; iter < max_iter; iter++) { // Update Gradient and Hessian (use H' = H + sigma I) double h11 = sigma; // numerically ensures strict PD double h22 = sigma; double h21 = 0.0; double g1 = 0.0; double g2 = 0.0; for (int i = 0; i < l; i++) { double p, q; fApB = dec_values[i] * A + B; if (fApB >= 0) { p = Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB)); q = 1.0 / (1.0 + Math.Exp(-fApB)); } else { p = 1.0 / (1.0 + Math.Exp(fApB)); q = Math.Exp(fApB) / (1.0 + Math.Exp(fApB)); } double d2 = p * q; h11 += dec_values[i] * dec_values[i] * d2; h22 += d2; h21 += dec_values[i] * d2; double d1 = t[i] - p; g1 += dec_values[i] * d1; g2 += d1; } // Stopping Criteria if (Math.Abs(g1) < eps && Math.Abs(g2) < eps) { break; } // Finding Newton direction: -inv(H') * g double det = h11 * h22 - h21 * h21; double dA = -(h22 * g1 - h21 * g2) / det; double dB = -(-h21 * g1 + h11 * g2) / det; double gd = g1 * dA + g2 * dB; double stepsize = 1; // Line Search while (stepsize >= min_step) { double newA = A + stepsize * dA; double newB = B + stepsize * dB; // New function value double newf = 0.0; for (int i = 0; i < l; i++) { fApB = dec_values[i] * newA + newB; if (fApB >= 0) { newf += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB)); } else { newf += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB)); } } // Check sufficient decrease if (newf < fval + 0.0001 * stepsize * gd) { A = newA; B = newB; fval = newf; break; } else { stepsize = stepsize / 2.0; } } if (stepsize < min_step) { Svm.info("Line search fails in two-class probability estimates\n"); break; } } if (iter >= max_iter) { Svm.info("Reaching maximal iterations in two-class probability estimates\n"); } probAB[0] = A; probAB[1] = B; }
private static DecisionFunction svm_train_one(SvmProblem prob, SvmParameter param, double Cp, double Cn) { double[] alpha = new double[prob.Lenght]; var si = new SolutionInfo(); switch (param.SvmType) { case SvmType.C_SVC: solve_c_svc(prob, param, alpha, si, Cp, Cn); break; case SvmType.NU_SVC: solve_nu_svc(prob, param, alpha, si); break; case SvmType.ONE_CLASS: solve_one_class(prob, param, alpha, si); break; case SvmType.EPSILON_SVR: solve_epsilon_svr(prob, param, alpha, si); break; case SvmType.NU_SVR: solve_nu_svr(prob, param, alpha, si); break; } Svm.info("obj = " + si.Obj + ", rho = " + si.Rho + "\n"); // output SVs int nSV = 0; int nBSV = 0; for (int i = 0; i < prob.Lenght; i++) { if (Math.Abs(alpha[i]) > 0) { ++nSV; if (prob.Y[i] > 0) { if (Math.Abs(alpha[i]) >= si.UpperBoundP) { ++nBSV; } } else { if (Math.Abs(alpha[i]) >= si.UpperBoundN) { ++nBSV; } } } } Svm.info("nSV = " + nSV + ", nBSV = " + nBSV + "\n"); var f = new DecisionFunction(alpha, si.Rho); return(f); }