// Initialize the filter with a set of TransformSmoothParameters.
    public void Init(KinectCommon.NuiTransformSmoothParameters smoothingParameters)
    {
        this.smoothParameters = smoothingParameters;

        this.Reset();
        this.init = true;
    }
    /// <summary>
    /// Initialize the filter with a set of manually specified TransformSmoothParameters.
    /// </summary>
    /// <param name="smoothingValue">Smoothing = [0..1], lower values is closer to the raw data and more noisy.</param>
    /// <param name="correctionValue">Correction = [0..1], higher values correct faster and feel more responsive.</param>
    /// <param name="predictionValue">Prediction = [0..n], how many frames into the future we want to predict.</param>
    /// <param name="jitterRadiusValue">JitterRadius = The deviation distance in m that defines jitter.</param>
    /// <param name="maxDeviationRadiusValue">MaxDeviation = The maximum distance in m that filtered positions are allowed to deviate from raw data.</param>
    public void Init(float smoothingValue, float correctionValue, float predictionValue, float jitterRadiusValue, float maxDeviationRadiusValue)
    {
        this.smoothParameters = new KinectCommon.NuiTransformSmoothParameters();

        this.smoothParameters.fSmoothing          = smoothingValue;          // How much soothing will occur.  Will lag when too high
        this.smoothParameters.fCorrection         = correctionValue;         // How much to correct back from prediction.  Can make things springy
        this.smoothParameters.fPrediction         = predictionValue;         // Amount of prediction into the future to use. Can over shoot when too high
        this.smoothParameters.fJitterRadius       = jitterRadiusValue;       // Size of the radius where jitter is removed. Can do too much smoothing when too high
        this.smoothParameters.fMaxDeviationRadius = maxDeviationRadiusValue; // Size of the max prediction radius Can snap back to noisy data when too high

        this.Reset();
        this.init = true;
    }
Exemple #3
0
    // Update the filter with a new frame of data and smooth.
    public void UpdateFilter(ref KinectCommon.NuiSkeletonData skeleton)
    {
//        if (null == skeleton)
//        {
//            return;
//        }

        if (skeleton.eTrackingState != KinectCommon.NuiSkeletonTrackingState.SkeletonTracked)
        {
            return;
        }

        if (this.init == false)
        {
            this.Init();    // initialize with default parameters
        }

        //Array jointTypeValues = Enum.GetValues(typeof(KinectCommon.NuiSkeletonPositionIndex));

        KinectCommon.NuiTransformSmoothParameters tempSmoothingParams = new KinectCommon.NuiTransformSmoothParameters();

        // Check for divide by zero. Use an epsilon of a 10th of a millimeter
        this.smoothParameters.fJitterRadius = Math.Max(0.0001f, this.smoothParameters.fJitterRadius);

        tempSmoothingParams.fSmoothing  = smoothParameters.fSmoothing;
        tempSmoothingParams.fCorrection = smoothParameters.fCorrection;
        tempSmoothingParams.fPrediction = smoothParameters.fPrediction;

        int jointsCount = (int)KinectCommon.NuiSkeletonPositionIndex.Count;

        for (int jointIndex = 0; jointIndex < jointsCount; jointIndex++)
        {
            //KinectCommon.NuiSkeletonPositionIndex jt = (KinectCommon.NuiSkeletonPositionIndex)jointTypeValues.GetValue(jointIndex);

            // If not tracked, we smooth a bit more by using a bigger jitter radius
            // Always filter feet highly as they are so noisy
            if (skeleton.SkeletonTrackingState[jointIndex] != KinectCommon.NuiSkeletonPositionTrackingState.Tracked)
            {
                tempSmoothingParams.fJitterRadius       = smoothParameters.fJitterRadius * 2.0f;
                tempSmoothingParams.fMaxDeviationRadius = smoothParameters.fMaxDeviationRadius * 2.0f;
            }
            else
            {
                tempSmoothingParams.fJitterRadius       = smoothParameters.fJitterRadius;
                tempSmoothingParams.fMaxDeviationRadius = smoothParameters.fMaxDeviationRadius;
            }

            FilterJoint(ref skeleton, jointIndex, ref tempSmoothingParams);
        }
    }
    // Update the filter for one joint.
    protected void FilterJoint(ref KinectCommon.NuiSkeletonData skeleton, int jointIndex, ref KinectCommon.NuiTransformSmoothParameters smoothingParameters)
    {
        float filteredState;
        float trend;
        float diffVal;

        float rawState          = (float)skeleton.SkeletonTrackingState[jointIndex];
        float prevFilteredState = history[jointIndex].FilteredState;
        float prevTrend         = history[jointIndex].Trend;
        float prevRawState      = history[jointIndex].RawState;

        // If joint is invalid, reset the filter
        if (rawState == 0f)
        {
            history[jointIndex].FrameCount = 0;
        }

        // Initial start values
        if (history[jointIndex].FrameCount == 0)
        {
            filteredState = rawState;
            trend         = 0f;
        }
        else if (this.history[jointIndex].FrameCount == 1)
        {
            filteredState = (rawState + prevRawState) * 0.5f;
            diffVal       = filteredState - prevFilteredState;
            trend         = (diffVal * smoothingParameters.fCorrection) + (prevTrend * (1.0f - smoothingParameters.fCorrection));
        }
        else
        {
//            // First apply jitter filter
//            diffVal = rawState - prevFilteredState;
//
//            if (diffVal <= smoothingParameters.fJitterRadius)
//            {
//                filteredState = (rawState * (diffVal / smoothingParameters.fJitterRadius)) + (prevFilteredState * (1.0f - (diffVal / smoothingParameters.fJitterRadius)));
//            }
//            else
//            {
//                filteredState = rawState;
//            }

            filteredState = rawState;

            // Now the double exponential smoothing filter
            filteredState = (filteredState * (1.0f - smoothingParameters.fSmoothing)) + ((prevFilteredState + prevTrend) * smoothingParameters.fSmoothing);

            diffVal = filteredState - prevFilteredState;
            trend   = (diffVal * smoothingParameters.fCorrection) + (prevTrend * (1.0f - smoothingParameters.fCorrection));
        }

        // Predict into the future to reduce latency
        float predictedState = filteredState + (trend * smoothingParameters.fPrediction);

        // Check that we are not too far away from raw data
        diffVal = predictedState - rawState;

        if (diffVal > smoothingParameters.fMaxDeviationRadius)
        {
            predictedState = (predictedState * (smoothingParameters.fMaxDeviationRadius / diffVal)) + (rawState * (1.0f - (smoothingParameters.fMaxDeviationRadius / diffVal)));
        }

        // Save the data from this frame
        history[jointIndex].RawState      = rawState;
        history[jointIndex].FilteredState = filteredState;
        history[jointIndex].Trend         = trend;
        history[jointIndex].FrameCount++;

        // Set the filtered data back into the joint
        skeleton.SkeletonTrackingState[jointIndex] = (KinectCommon.NuiSkeletonPositionTrackingState)(predictedState + 0.5f);
    }
Exemple #5
0
    // Update the filter for one joint.
    protected void FilterJoint(ref KinectCommon.NuiSkeletonData skeleton, int jointIndex, ref KinectCommon.NuiTransformSmoothParameters smoothingParameters)
    {
//        if (null == skeleton)
//        {
//            return;
//        }

        //int jointIndex = (int)jt;

        Vector3 filteredPosition;
        Vector3 diffvec;
        Vector3 trend;
        float   diffVal;

        Vector3 rawPosition          = (Vector3)skeleton.SkeletonPositions[jointIndex];
        Vector3 prevFilteredPosition = this.history[jointIndex].FilteredPosition;
        Vector3 prevTrend            = this.history[jointIndex].Trend;
        Vector3 prevRawPosition      = this.history[jointIndex].RawPosition;
        bool    jointIsValid         = KinectHelper.JointPositionIsValid(rawPosition);

        // If joint is invalid, reset the filter
        if (!jointIsValid)
        {
            history[jointIndex].FrameCount = 0;
        }

        // Initial start values
        if (this.history[jointIndex].FrameCount == 0)
        {
            filteredPosition = rawPosition;
            trend            = Vector3.zero;
        }
        else if (this.history[jointIndex].FrameCount == 1)
        {
            filteredPosition = (rawPosition + prevRawPosition) * 0.5f;
            diffvec          = filteredPosition - prevFilteredPosition;
            trend            = (diffvec * smoothingParameters.fCorrection) + (prevTrend * (1.0f - smoothingParameters.fCorrection));
        }
        else
        {
            // First apply jitter filter
            diffvec = rawPosition - prevFilteredPosition;
            diffVal = Math.Abs(diffvec.magnitude);

            if (diffVal <= smoothingParameters.fJitterRadius)
            {
                filteredPosition = (rawPosition * (diffVal / smoothingParameters.fJitterRadius)) + (prevFilteredPosition * (1.0f - (diffVal / smoothingParameters.fJitterRadius)));
            }
            else
            {
                filteredPosition = rawPosition;
            }

            // Now the double exponential smoothing filter
            filteredPosition = (filteredPosition * (1.0f - smoothingParameters.fSmoothing)) + ((prevFilteredPosition + prevTrend) * smoothingParameters.fSmoothing);

            diffvec = filteredPosition - prevFilteredPosition;
            trend   = (diffvec * smoothingParameters.fCorrection) + (prevTrend * (1.0f - smoothingParameters.fCorrection));
        }

        // Predict into the future to reduce latency
        Vector3 predictedPosition = filteredPosition + (trend * smoothingParameters.fPrediction);

        // Check that we are not too far away from raw data
        diffvec = predictedPosition - rawPosition;
        diffVal = Mathf.Abs(diffvec.magnitude);

        if (diffVal > smoothingParameters.fMaxDeviationRadius)
        {
            predictedPosition = (predictedPosition * (smoothingParameters.fMaxDeviationRadius / diffVal)) + (rawPosition * (1.0f - (smoothingParameters.fMaxDeviationRadius / diffVal)));
        }

        // Save the data from this frame
        history[jointIndex].RawPosition      = rawPosition;
        history[jointIndex].FilteredPosition = filteredPosition;
        history[jointIndex].Trend            = trend;
        history[jointIndex].FrameCount++;

        // Set the filtered data back into the joint
//        Joint j = skeleton.Joints[jt];
//        j.Position = KinectHelper.Vector3ToSkeletonPoint(predictedPosition);
//        skeleton.Joints[jt] = j;
        skeleton.SkeletonPositions[jointIndex] = (Vector4)predictedPosition;
    }
    // Update the filter for one joint.
    protected void FilterJoint(ref KinectCommon.NuiSkeletonData skeleton, int jointIndex, ref KinectCommon.NuiTransformSmoothParameters smoothingParameters, ref Matrix4x4[] jointOrientations)
    {
//        if (null == skeleton)
//        {
//            return;
//        }

//        int jointIndex = (int)jt;

        Quaternion filteredOrientation;
        Quaternion trend;

        Vector3 fwdVector = (Vector3)jointOrientations[jointIndex].GetColumn(2);

        if (fwdVector == Vector3.zero)
        {
            return;
        }

        Quaternion rawOrientation          = Quaternion.LookRotation(fwdVector, jointOrientations[jointIndex].GetColumn(1));
        Quaternion prevFilteredOrientation = this.history[jointIndex].FilteredBoneOrientation;
        Quaternion prevTrend          = this.history[jointIndex].Trend;
        Vector3    rawPosition        = (Vector3)skeleton.SkeletonPositions[jointIndex];
        bool       orientationIsValid = KinectHelper.JointPositionIsValid(rawPosition) && KinectHelper.IsTrackedOrInferred(skeleton, jointIndex) && KinectHelper.BoneOrientationIsValid(rawOrientation);

        if (!orientationIsValid)
        {
            if (this.history[jointIndex].FrameCount > 0)
            {
                rawOrientation = history[jointIndex].FilteredBoneOrientation;
                history[jointIndex].FrameCount = 0;
            }
        }

        // Initial start values or reset values
        if (this.history[jointIndex].FrameCount == 0)
        {
            // Use raw position and zero trend for first value
            filteredOrientation = rawOrientation;
            trend = Quaternion.identity;
        }
        else if (this.history[jointIndex].FrameCount == 1)
        {
            // Use average of two positions and calculate proper trend for end value
            Quaternion prevRawOrientation = this.history[jointIndex].RawBoneOrientation;
            filteredOrientation = KinectHelper.EnhancedQuaternionSlerp(prevRawOrientation, rawOrientation, 0.5f);

            Quaternion diffStarted = KinectHelper.RotationBetweenQuaternions(filteredOrientation, prevFilteredOrientation);
            trend = KinectHelper.EnhancedQuaternionSlerp(prevTrend, diffStarted, smoothingParameters.fCorrection);
        }
        else
        {
            // First apply a jitter filter
            Quaternion diffJitter    = KinectHelper.RotationBetweenQuaternions(rawOrientation, prevFilteredOrientation);
            float      diffValJitter = (float)Math.Abs(KinectHelper.QuaternionAngle(diffJitter));

            if (diffValJitter <= smoothingParameters.fJitterRadius)
            {
                filteredOrientation = KinectHelper.EnhancedQuaternionSlerp(prevFilteredOrientation, rawOrientation, diffValJitter / smoothingParameters.fJitterRadius);
            }
            else
            {
                filteredOrientation = rawOrientation;
            }

            // Now the double exponential smoothing filter
            filteredOrientation = KinectHelper.EnhancedQuaternionSlerp(filteredOrientation, prevFilteredOrientation * prevTrend, smoothingParameters.fSmoothing);

            diffJitter = KinectHelper.RotationBetweenQuaternions(filteredOrientation, prevFilteredOrientation);
            trend      = KinectHelper.EnhancedQuaternionSlerp(prevTrend, diffJitter, smoothingParameters.fCorrection);
        }

        // Use the trend and predict into the future to reduce latency
        Quaternion predictedOrientation = filteredOrientation * KinectHelper.EnhancedQuaternionSlerp(Quaternion.identity, trend, smoothingParameters.fPrediction);

        // Check that we are not too far away from raw data
        Quaternion diff    = KinectHelper.RotationBetweenQuaternions(predictedOrientation, filteredOrientation);
        float      diffVal = (float)Math.Abs(KinectHelper.QuaternionAngle(diff));

        if (diffVal > smoothingParameters.fMaxDeviationRadius)
        {
            predictedOrientation = KinectHelper.EnhancedQuaternionSlerp(filteredOrientation, predictedOrientation, smoothingParameters.fMaxDeviationRadius / diffVal);
        }

//        predictedOrientation.Normalize();
//        filteredOrientation.Normalize();
//        trend.Normalize();

        // Save the data from this frame
        history[jointIndex].RawBoneOrientation      = rawOrientation;
        history[jointIndex].FilteredBoneOrientation = filteredOrientation;
        history[jointIndex].Trend = trend;
        history[jointIndex].FrameCount++;

        // Set the filtered and predicted data back into the bone orientation
        if (KinectHelper.BoneOrientationIsValid(predictedOrientation))
        {
            jointOrientations[jointIndex].SetTRS(Vector3.zero, predictedOrientation, Vector3.one);
        }
    }