Exemple #1
0
        // apply deferred requests for a vessel and synchronize the new amount in the vessel
        public void Sync(Vessel v, double elapsed_s)
        {
            // execute all possible recipes
            bool executing = true;

            while (executing)
            {
                executing = false;
                for (int i = 0; i < recipes.Count; ++i)
                {
                    Resource_recipe recipe = recipes[i];
                    if (recipe.left > double.Epsilon)
                    {
                        executing |= recipe.Execute(v, this);
                    }
                }
            }

            // forget the recipes
            recipes.Clear();

            // apply all deferred requests and synchronize to vessel
            foreach (var pair in resources)
            {
                pair.Value.Sync(v, elapsed_s);
            }
        }
Exemple #2
0
        static void ProcessConverter(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleResourceConverter converter, Vessel_resources resources, double elapsed_s)
        {
            // note: ignore stock temperature mechanic of converters
            // note: ignore auto shutdown
            // note: non-mandatory resources 'dynamically scale the ratios', that is exactly what mandatory resources do too (DERP ALERT)
            // note: 'undo' stock behavior by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)

            // if active
            if (Lib.Proto.GetBool(m, "IsActivated"))
            {
                // determine if vessel is full of all output resources
                // note: comparing against previous amount
                bool full = true;
                foreach (var or in converter.outputList)
                {
                    Resource_info res = resources.Info(v, or.ResourceName);
                    full &= (res.level >= converter.FillAmount - double.Epsilon);
                }

                // if not full
                if (!full)
                {
                    // deduce crew bonus
                    int exp_level = -1;
                    if (converter.UseSpecialistBonus)
                    {
                        foreach (ProtoCrewMember c in Lib.CrewList(v))
                        {
                            if (c.experienceTrait.Effects.Find(k => k.Name == converter.ExperienceEffect) != null)
                            {
                                exp_level = Math.Max(exp_level, c.experienceLevel);
                            }
                        }
                    }
                    double exp_bonus = exp_level < 0
                                          ? converter.EfficiencyBonus * converter.SpecialistBonusBase
                                          : converter.EfficiencyBonus * (converter.SpecialistBonusBase + (converter.SpecialistEfficiencyFactor * (exp_level + 1)));

                    // create and commit recipe
                    Resource_recipe recipe = new Resource_recipe(p);
                    foreach (var ir in converter.inputList)
                    {
                        recipe.Input(ir.ResourceName, ir.Ratio * exp_bonus * elapsed_s);
                    }
                    foreach (var or in converter.outputList)
                    {
                        recipe.Output(or.ResourceName, or.Ratio * exp_bonus * elapsed_s, or.DumpExcess);
                    }
                    resources.Transform(recipe);
                }

                // undo stock behavior by forcing last_update_time to now
                Lib.Proto.Set(m, "lastUpdateTime", Planetarium.GetUniversalTime());
            }
        }
Exemple #3
0
        private void ExecuteVesselWide(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s)
        {
            // evaluate modifiers
            // if a given PartModule has a larger than 1 capacity for a process, then the multiplication happens here
            // remember that when a process is enabled the units of process are stored in the PartModule as a pseudo-resource
            double k = Modifiers.Evaluate(v, vi, resources, modifiers);

            Resource_recipe recipe = new Resource_recipe((Part)null);

            ExecuteRecipe(k, resources, elapsed_s, recipe);
        }
Exemple #4
0
		private static void ResourceUpdate(Vessel v, Harvester harvester, double min_abundance, double elapsed_s)
		{
			double abundance = SampleAbundance(v, harvester);
			if (abundance > min_abundance)
			{
				Resource_recipe recipe = new Resource_recipe();
				recipe.Input("ElectricCharge", harvester.ec_rate * elapsed_s);
				recipe.Output(harvester.resource, harvester.rate * (abundance/harvester.abundance_rate) * elapsed_s, false);
				ResourceCache.Transform(v, recipe);
			}
		}
Exemple #5
0
 static void ProcessGenerator(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleGenerator generator, Vessel_resources resources, double elapsed_s)
 {
     // if active
     if (Lib.Proto.GetBool(m, "generatorIsActive"))
     {
         // create and commit recipe
         Resource_recipe recipe = new Resource_recipe(p);
         foreach (ModuleResource ir in generator.resHandler.inputResources)
         {
             recipe.Input(ir.name, ir.rate * elapsed_s);
         }
         foreach (ModuleResource or in generator.resHandler.outputResources)
         {
             recipe.Output(or.name, or.rate * elapsed_s, true);
         }
         resources.Transform(recipe);
     }
 }
Exemple #6
0
		private static void ResourceUpdate(Vessel v, Harvester harvester, double min_abundance, double elapsed_s)
		{
			double abundance = SampleAbundance(v, harvester);
			if (abundance > min_abundance)
			{
				double rate = harvester.rate;

				// Bonus(..., -2): a level 0 engineer will alreaday add 2 bonus points jsut because he's there,
				// regardless of level. efficiency will raise further with higher levels.
				int bonus = engineer_cs.Bonus(v, -2);
				double crew_gain = 1 + bonus * Settings.HarvesterCrewLevelBonus;
				crew_gain = Lib.Clamp(crew_gain, 1, Settings.MaxHarvesterBonus);
				rate *= crew_gain;

				Resource_recipe recipe = new Resource_recipe(harvester.part);
				recipe.Input("ElectricCharge", harvester.ec_rate * elapsed_s);
				recipe.Output(harvester.resource, harvester.rate * (abundance/harvester.abundance_rate) * elapsed_s, false);
				ResourceCache.Transform(v, recipe);
			}
		}
        public void Execute(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s)
        {
            // evaluate modifiers
            double k = Modifiers.Evaluate(v, vi, resources, modifiers);

            // only execute processes if necessary
            if (k > double.Epsilon)
            {
                // prepare recipe
                Resource_recipe recipe = new Resource_recipe();
                foreach (var p in inputs)
                {
                    recipe.Input(p.Key, p.Value * k * elapsed_s);
                }
                foreach (var p in outputs)
                {
                    recipe.Output(p.Key, p.Value * k * elapsed_s, dump.Check(p.Key));
                }
                resources.Transform(recipe);
            }
        }
Exemple #8
0
 private void ExecutePerPart(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s)
 {
     if (v.loaded)
     {
         foreach (Part p in v.Parts)
         {
             double          k      = Modifiers.Evaluate(v, vi, resources, modifiers, p, null);
             Resource_recipe recipe = new Resource_recipe(p);
             ExecuteRecipe(k, resources, elapsed_s, recipe);
         }
     }
     else
     {
         foreach (ProtoPartSnapshot p in v.protoVessel.protoPartSnapshots)
         {
             double          k      = Modifiers.Evaluate(v, vi, resources, modifiers, null, p);
             Resource_recipe recipe = new Resource_recipe(p);
             ExecuteRecipe(k, resources, elapsed_s, recipe);
         }
     }
 }
Exemple #9
0
 private void ExecuteRecipe(double k, Vessel_resources resources, double elapsed_s, Resource_recipe recipe)
 {
     // only execute processes if necessary
     if (k > double.Epsilon)
     {
         foreach (var p in inputs)
         {
             recipe.Input(p.Key, p.Value * k * elapsed_s);
         }
         foreach (var p in outputs)
         {
             recipe.Output(p.Key, p.Value * k * elapsed_s, dump.Check(p.Key));
         }
         foreach (var p in cures)
         {
             // TODO this assumes that the cure modifies always put the resource first
             // works: modifier = _SickbayRDU,zerog works
             // fails: modifier = zerog,_SickbayRDU
             recipe.Cure(p.Key, p.Value * k * elapsed_s, modifiers[0]);
         }
         resources.Transform(recipe);
     }
 }
Exemple #10
0
        static void ProcessAsteroidDrill(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleAsteroidDrill asteroid_drill, Vessel_resources resources, double elapsed_s)
        {
            // note: untested
            // note: ignore stock temperature mechanic of asteroid drills
            // note: ignore auto shutdown
            // note: 'undo' stock behavior by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)

            // if active
            if (Lib.Proto.GetBool(m, "IsActivated"))
            {
                // get asteroid data
                ProtoPartModuleSnapshot asteroid_info     = null;
                ProtoPartModuleSnapshot asteroid_resource = null;
                foreach (ProtoPartSnapshot pp in v.protoVessel.protoPartSnapshots)
                {
                    if (asteroid_info == null)
                    {
                        asteroid_info = pp.modules.Find(k => k.moduleName == "ModuleAsteroidInfo");
                    }
                    if (asteroid_resource == null)
                    {
                        asteroid_resource = pp.modules.Find(k => k.moduleName == "ModuleAsteroidResource");
                    }
                }

                // if there is actually an asteroid attached to this active asteroid drill (it should)
                if (asteroid_info != null && asteroid_resource != null)
                {
                    // get some data
                    double mass_threshold = Lib.Proto.GetDouble(asteroid_info, "massThresholdVal");
                    double mass           = Lib.Proto.GetDouble(asteroid_info, "currentMassVal");
                    double abundance      = Lib.Proto.GetDouble(asteroid_resource, "abundance");
                    string res_name       = Lib.Proto.GetString(asteroid_resource, "resourceName");
                    double res_density    = PartResourceLibrary.Instance.GetDefinition(res_name).density;

                    // if asteroid isn't depleted
                    if (mass > mass_threshold && abundance > double.Epsilon)
                    {
                        // deduce crew bonus
                        int exp_level = -1;
                        if (asteroid_drill.UseSpecialistBonus)
                        {
                            foreach (ProtoCrewMember c in Lib.CrewList(v))
                            {
                                if (c.experienceTrait.Effects.Find(k => k.Name == asteroid_drill.ExperienceEffect) != null)
                                {
                                    exp_level = Math.Max(exp_level, c.experienceLevel);
                                }
                            }
                        }
                        double exp_bonus = exp_level < 0
                                                ? asteroid_drill.EfficiencyBonus * asteroid_drill.SpecialistBonusBase
                                                : asteroid_drill.EfficiencyBonus * (asteroid_drill.SpecialistBonusBase + (asteroid_drill.SpecialistEfficiencyFactor * (exp_level + 1)));

                        // determine resource extracted
                        double res_amount = abundance * asteroid_drill.Efficiency * exp_bonus * elapsed_s;

                        // transform EC into mined resource
                        Resource_recipe recipe = new Resource_recipe(p);
                        recipe.Input("ElectricCharge", asteroid_drill.PowerConsumption * elapsed_s);
                        recipe.Output(res_name, res_amount, true);
                        resources.Transform(recipe);

                        // if there was ec
                        // note: comparing against amount in previous simulation step
                        if (resources.Info(v, "ElectricCharge").amount > double.Epsilon)
                        {
                            // consume asteroid mass
                            Lib.Proto.Set(asteroid_info, "currentMassVal", (mass - res_density * res_amount));
                        }
                    }
                }

                // undo stock behavior by forcing last_update_time to now
                Lib.Proto.Set(m, "lastUpdateTime", Planetarium.GetUniversalTime());
            }
        }
Exemple #11
0
        static void ProcessDrill(Vessel v, ProtoPartSnapshot p, ProtoPartModuleSnapshot m, ModuleResourceHarvester harvester, Vessel_resources resources, double elapsed_s)
        {
            // note: ignore stock temperature mechanic of harvesters
            // note: ignore auto shutdown
            // note: ignore depletion (stock seem to do the same)
            // note: 'undo' stock behavior by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)

            // if active
            if (Lib.Proto.GetBool(m, "IsActivated"))
            {
                // do nothing if full
                // note: comparing against previous amount
                if (resources.Info(v, harvester.ResourceName).level < harvester.FillAmount - double.Epsilon)
                {
                    // deduce crew bonus
                    int exp_level = -1;
                    if (harvester.UseSpecialistBonus)
                    {
                        foreach (ProtoCrewMember c in Lib.CrewList(v))
                        {
                            if (c.experienceTrait.Effects.Find(k => k.Name == harvester.ExperienceEffect) != null)
                            {
                                exp_level = Math.Max(exp_level, c.experienceLevel);
                            }
                        }
                    }
                    double exp_bonus = exp_level < 0
                                          ? harvester.EfficiencyBonus * harvester.SpecialistBonusBase
                                          : harvester.EfficiencyBonus * (harvester.SpecialistBonusBase + (harvester.SpecialistEfficiencyFactor * (exp_level + 1)));

                    // detect amount of ore in the ground
                    AbundanceRequest request = new AbundanceRequest
                    {
                        Altitude     = v.altitude,
                        BodyId       = v.mainBody.flightGlobalsIndex,
                        CheckForLock = false,
                        Latitude     = v.latitude,
                        Longitude    = v.longitude,
                        ResourceType = (HarvestTypes)harvester.HarvesterType,
                        ResourceName = harvester.ResourceName
                    };
                    double abundance = ResourceMap.Instance.GetAbundance(request);

                    // if there is actually something (should be if active when unloaded)
                    if (abundance > harvester.HarvestThreshold)
                    {
                        // create and commit recipe
                        Resource_recipe recipe = new Resource_recipe(p);
                        foreach (var ir in harvester.inputList)
                        {
                            recipe.Input(ir.ResourceName, ir.Ratio * elapsed_s);
                        }
                        recipe.Output(harvester.ResourceName, abundance * harvester.Efficiency * exp_bonus * elapsed_s, true);
                        resources.Transform(recipe);
                    }
                }

                // undo stock behavior by forcing last_update_time to now
                Lib.Proto.Set(m, "lastUpdateTime", Planetarium.GetUniversalTime());
            }
        }
Exemple #12
0
        public void Execute(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s)
        {
            // store list of crew to kill
            List <ProtoCrewMember> deferred_kills = new List <ProtoCrewMember>();

            // get input resource handler
            Resource_info res = input.Length > 0 ? resources.Info(v, input) : null;

            // determine message variant
            uint variant = vi.temperature < PreferencesLifeSupport.Instance.survivalTemperature ? 0 : 1u;

            // get product of all environment modifiers
            double k = Modifiers.Evaluate(v, vi, resources, modifiers);

            bool lifetime_enabled = PreferencesBasic.Instance.lifetime;

            // for each crew
            foreach (ProtoCrewMember c in Lib.CrewList(v))
            {
                // get kerbal data
                KerbalData kd = DB.Kerbal(c.name);

                // skip rescue kerbals
                if (kd.rescue)
                {
                    continue;
                }

                // skip disabled kerbals
                if (kd.disabled)
                {
                    continue;
                }

                // get kerbal property data from db
                RuleData rd = kd.Rule(name);
                rd.lifetime = lifetime_enabled && lifetime;

                // if continuous
                double step;
                if (interval <= double.Epsilon)
                {
                    // influence consumption by elapsed time
                    step = elapsed_s;
                }
                // if interval-based
                else
                {
                    // accumulate time
                    rd.time_since += elapsed_s;

                    // determine number of steps
                    step = Math.Floor(rd.time_since / interval);

                    // consume time
                    rd.time_since -= step * interval;

                    // remember if a meal is consumed/produced in this simulation step
                    if (step > 0.99)
                    {
                        res.SetMealHappened();
                    }
                    if (output.Length > 0 && step > 0.99)
                    {
                        ResourceCache.Info(v, output).SetMealHappened();
                    }
                }

                // if continuous, or if one or more intervals elapsed
                if (step > double.Epsilon)
                {
                    double r = rate * Variance(name, c, individuality);                      // kerbal-specific variance

                    // if there is a resource specified
                    if (res != null && r > double.Epsilon)
                    {
                        // determine amount of resource to consume
                        double required = r                                   // consumption rate
                                          * k                                 // product of environment modifiers
                                          * step;                             // seconds elapsed or number of steps

                        // if there is no output
                        if (output.Length == 0)
                        {
                            // simply consume (that is faster)
                            res.Consume(required);
                        }
                        // if there is an output and monitor is false
                        else if (!monitor)
                        {
                            // transform input into output resource
                            // - rules always dump excess overboard (because it is waste)
                            Resource_recipe recipe = new Resource_recipe((Part)null);                              // kerbals are not associated with a part
                            recipe.Input(input, required);
                            recipe.Output(output, required * ratio, true);
                            resources.Transform(recipe);
                        }
                        // if monitor then do not consume input resource and only produce output if resource percentage + monitor_offset is < 100%
                        else if ((res.amount / res.capacity) + monitor_offset < 1.0)
                        {
                            // simply produce (that is faster)
                            resources.Produce(v, output, required * ratio);
                        }
                    }

                    // degenerate:
                    // - if the environment modifier is not telling to reset (by being zero)
                    // - if the input threshold is reached if used
                    // - if this rule is resource-less, or if there was not enough resource in the vessel
                    if (input_threshold >= double.Epsilon)
                    {
                        if (res.amount >= double.Epsilon && res.capacity >= double.Epsilon)
                        {
                            trigger = (res.amount / res.capacity) + monitor_offset >= input_threshold;
                        }
                        else
                        {
                            trigger = false;
                        }
                    }
                    else
                    {
                        trigger = input.Length == 0 || res.amount <= double.Epsilon;
                    }

                    if (k > 0.0 && trigger)
                    {
                        rd.problem += degeneration                                   // degeneration rate per-second or per-interval
                                      * k                                            // product of environment modifiers
                                      * step                                         // seconds elapsed or by number of steps
                                      * Variance(name, c, variance);                 // kerbal-specific variance
                    }
                    // else slowly recover
                    else
                    {
                        rd.problem *= 1.0 / (1.0 + Math.Max(interval, 1.0) * step * 0.002);
                    }
                }

                bool do_breakdown = false;

                if (breakdown && PreferencesBasic.Instance.stressBreakdowns)
                {
                    // stress level
                    double breakdown_probability = rd.problem / warning_threshold;
                    breakdown_probability = Lib.Clamp(breakdown_probability, 0.0, 1.0);

                    // use the stupidity of a kerbal.
                    // however, nobody is perfect - not even a kerbal with a stupidity of 0.
                    breakdown_probability *= c.stupidity * 0.6 + 0.4;

                    // apply the weekly error rate
                    breakdown_probability *= PreferencesBasic.Instance.stressBreakdownRate;

                    // now we have the probability for one failure per week, based on the
                    // individual stupidity and stress level of the kerbal.

                    breakdown_probability = (breakdown_probability * elapsed_s) / (Lib.DaysInYear() * Lib.HoursInDay() * 3600);
                    if (breakdown_probability > Lib.RandomDouble())
                    {
                        do_breakdown = true;

                        // we're stressed out and just made a major mistake, this further increases the stress level...
                        rd.problem += warning_threshold * 0.05;                         // add 5% of the warning treshold to current stress level
                    }
                }

                // kill kerbal if necessary
                if (rd.problem >= fatal_threshold)
                {
                    if (fatal_message.Length > 0)
                    {
                        Message.Post(breakdown ? Severity.breakdown : Severity.fatality, Lib.ExpandMsg(fatal_message, v, c, variant));
                    }

                    if (breakdown)
                    {
                        do_breakdown = true;

                        // move back between warning and danger level
                        rd.problem = (warning_threshold + danger_threshold) * 0.5;

                        // make sure next danger message is shown
                        rd.message = 1;
                    }
                    else
                    {
                        deferred_kills.Add(c);
                    }
                }
                // show messages
                else if (rd.problem >= danger_threshold && rd.message < 2)
                {
                    if (danger_message.Length > 0)
                    {
                        Message.Post(Severity.danger, Lib.ExpandMsg(danger_message, v, c, variant));
                    }
                    rd.message = 2;
                }
                else if (rd.problem >= warning_threshold && rd.message < 1)
                {
                    if (warning_message.Length > 0)
                    {
                        Message.Post(Severity.warning, Lib.ExpandMsg(warning_message, v, c, variant));
                    }
                    rd.message = 1;
                }
                else if (rd.problem < warning_threshold && rd.message > 0)
                {
                    if (relax_message.Length > 0)
                    {
                        Message.Post(Severity.relax, Lib.ExpandMsg(relax_message, v, c, variant));
                    }
                    rd.message = 0;
                }

                if (do_breakdown)
                {
                    // trigger breakdown event
                    Misc.Breakdown(v, c);
                }
            }

            // execute the deferred kills
            foreach (ProtoCrewMember c in deferred_kills)
            {
                Misc.Kill(v, c);
            }
        }
Exemple #13
0
 // register deferred execution of a recipe (shortcut)
 public static void Transform(Vessel v, Resource_recipe recipe)
 {
     Get(v).Transform(recipe);
 }
Exemple #14
0
 // record deferred execution of a recipe
 public void Transform(Resource_recipe recipe)
 {
     recipes.Add(recipe);
 }
Exemple #15
0
        public void FixedUpdate()
        {
            // do nothing in the editor
            if (Lib.IsEditor())
            {
                return;
            }

            // if enabled and not ready for harvest
            if (active && growth < 0.99)
            {
                // get vessel info from the cache
                // - if the vessel is not valid (eg: flagged as debris) then solar flux will be 0 and landed false (but that's okay)
                Vessel_info vi = Cache.VesselInfo(vessel);

                // get resource cache
                Vessel_resources resources = ResourceCache.Get(vessel);
                Resource_info    ec        = resources.Info(vessel, "ElectricCharge");

                // deal with corner cases when greenhouse is assembled using KIS
                if (double.IsNaN(growth) || double.IsInfinity(growth))
                {
                    growth = 0.0;
                }

                // calculate natural and artificial lighting
                natural    = vi.solar_flux;
                artificial = Math.Max(light_tolerance - natural, 0.0);

                // consume EC for the lamps, scaled by artificial light intensity
                if (artificial > double.Epsilon)
                {
                    ec.Consume(ec_rate * (artificial / light_tolerance) * Kerbalism.elapsed_s, "greenhouse");
                }

                // reset artificial lighting if there is no ec left
                // - comparing against amount in previous simulation step
                if (ec.amount <= double.Epsilon)
                {
                    artificial = 0.0;
                }

                // execute recipe
                Resource_recipe recipe = new Resource_recipe(part, "greenhouse");
                foreach (ModuleResource input in resHandler.inputResources)
                {
                    // WasteAtmosphere is primary combined input
                    if (WACO2 && input.name == "WasteAtmosphere")
                    {
                        recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * Kerbalism.elapsed_s, "CarbonDioxide");
                    }
                    // CarbonDioxide is secondary combined input
                    else if (WACO2 && input.name == "CarbonDioxide")
                    {
                        recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * Kerbalism.elapsed_s, "");
                    }
                    // if atmosphere is breathable disable WasteAtmosphere / CO2
                    else if (!WACO2 && (input.name == "CarbonDioxide" || input.name == "WasteAtmosphere"))
                    {
                        recipe.Input(input.name, vi.breathable ? 0.0 : input.rate, "");
                    }
                    else
                    {
                        recipe.Input(input.name, input.rate * Kerbalism.elapsed_s);
                    }
                }
                foreach (ModuleResource output in resHandler.outputResources)
                {
                    // if atmosphere is breathable disable Oxygen
                    if (output.name == "Oxygen")
                    {
                        recipe.Output(output.name, vi.breathable ? 0.0 : output.rate * Kerbalism.elapsed_s, true);
                    }
                    else
                    {
                        recipe.Output(output.name, output.rate * Kerbalism.elapsed_s, true);
                    }
                }
                resources.Transform(recipe);

                // determine environment conditions
                bool lighting  = natural + artificial >= light_tolerance;
                bool pressure  = pressure_tolerance <= double.Epsilon || vi.pressure >= pressure_tolerance;
                bool radiation = radiation_tolerance <= double.Epsilon || vi.radiation * (1.0 - vi.shielding) < radiation_tolerance;

                // determine input resources conditions
                // - comparing against amounts in previous simulation step
                bool   inputs      = true;
                string missing_res = string.Empty;
                bool   dis_WACO2   = false;
                foreach (ModuleResource input in resHandler.inputResources)
                {
                    // combine WasteAtmosphere and CO2 if both exist
                    if (input.name == "WasteAtmosphere" || input.name == "CarbonDioxide")
                    {
                        if (dis_WACO2 || Cache.VesselInfo(vessel).breathable)
                        {
                            continue;                                                                              // skip if already checked or atmosphere is breathable
                        }
                        if (WACO2)
                        {
                            if (resources.Info(vessel, "WasteAtmosphere").amount <= double.Epsilon && resources.Info(vessel, "CarbonDioxide").amount <= double.Epsilon)
                            {
                                inputs      = false;
                                missing_res = "CarbonDioxide";
                                break;
                            }
                            dis_WACO2 = true;
                            continue;
                        }
                    }
                    if (resources.Info(vessel, input.name).amount <= double.Epsilon)
                    {
                        inputs      = false;
                        missing_res = input.name;
                        break;
                    }
                }

                // if growing
                if (lighting && pressure && radiation && inputs)
                {
                    // increase growth
                    growth += crop_rate * Kerbalism.elapsed_s;
                    growth  = Math.Min(growth, 1.0);

                    // notify the user when crop can be harvested
                    if (growth >= 0.99)
                    {
                        Message.Post(Lib.BuildString("On <b>", vessel.vesselName, "</b> the crop is ready to be harvested"));
                        growth = 1.0;
                    }
                }

                // update time-to-harvest
                tta = (1.0 - growth) / crop_rate;

                // update issues
                issue =
                    !inputs?Lib.BuildString("missing ", missing_res)
                        : !lighting ? "insufficient lighting"
                                : !pressure ? "insufficient pressure"
                                : !radiation ? "excessive radiation"
                                : string.Empty;
            }
        }
Exemple #16
0
        public static void BackgroundUpdate(Vessel v, ProtoPartModuleSnapshot m, Greenhouse g,
                                            Vessel_info vi, Vessel_resources resources, double elapsed_s)
        {
            // get protomodule data
            bool   active = Lib.Proto.GetBool(m, "active");
            double growth = Lib.Proto.GetDouble(m, "growth");

            // if enabled and not ready for harvest
            if (active && growth < 0.99)
            {
                // get resource handler
                Resource_info ec = resources.Info(v, "ElectricCharge");

                // calculate natural and artificial lighting
                double natural    = vi.solar_flux;
                double artificial = Math.Max(g.light_tolerance - natural, 0.0);

                // consume EC for the lamps, scaled by artificial light intensity
                if (artificial > double.Epsilon)
                {
                    ec.Consume(g.ec_rate * (artificial / g.light_tolerance) * elapsed_s, "greenhouse");
                }

                // reset artificial lighting if there is no ec left
                // note: comparing against amount in previous simulation step
                if (ec.amount <= double.Epsilon)
                {
                    artificial = 0.0;
                }

                // execute recipe
                Resource_recipe recipe = new Resource_recipe(g.part, "greenhouse");
                foreach (ModuleResource input in g.resHandler.inputResources)                 //recipe.Input(input.name, input.rate * elapsed_s);
                {
                    // WasteAtmosphere is primary combined input
                    if (g.WACO2 && input.name == "WasteAtmosphere")
                    {
                        recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * elapsed_s, "CarbonDioxide");
                    }
                    // CarbonDioxide is secondary combined input
                    else if (g.WACO2 && input.name == "CarbonDioxide")
                    {
                        recipe.Input(input.name, vi.breathable ? 0.0 : input.rate * elapsed_s, "");
                    }
                    // if atmosphere is breathable disable WasteAtmosphere / CO2
                    else if (!g.WACO2 && (input.name == "CarbonDioxide" || input.name == "WasteAtmosphere"))
                    {
                        recipe.Input(input.name, vi.breathable ? 0.0 : input.rate, "");
                    }
                    else
                    {
                        recipe.Input(input.name, input.rate * elapsed_s);
                    }
                }
                foreach (ModuleResource output in g.resHandler.outputResources)
                {
                    // if atmosphere is breathable disable Oxygen
                    if (output.name == "Oxygen")
                    {
                        recipe.Output(output.name, vi.breathable ? 0.0 : output.rate * elapsed_s, true);
                    }
                    else
                    {
                        recipe.Output(output.name, output.rate * elapsed_s, true);
                    }
                }
                resources.Transform(recipe);

                // determine environment conditions
                bool lighting  = natural + artificial >= g.light_tolerance;
                bool pressure  = g.pressure_tolerance <= double.Epsilon || vi.pressure >= g.pressure_tolerance;
                bool radiation = g.radiation_tolerance <= double.Epsilon || vi.radiation * (1.0 - vi.shielding) < g.radiation_tolerance;

                // determine inputs conditions
                // note: comparing against amounts in previous simulation step
                bool   inputs      = true;
                string missing_res = string.Empty;
                bool   dis_WACO2   = false;
                foreach (ModuleResource input in g.resHandler.inputResources)
                {
                    // combine WasteAtmosphere and CO2 if both exist
                    if (input.name == "WasteAtmosphere" || input.name == "CarbonDioxide")
                    {
                        if (dis_WACO2 || vi.breathable)
                        {
                            continue;                                                        // skip if already checked or atmosphere is breathable
                        }
                        if (g.WACO2)
                        {
                            if (resources.Info(v, "WasteAtmosphere").amount <= double.Epsilon && resources.Info(v, "CarbonDioxide").amount <= double.Epsilon)
                            {
                                inputs      = false;
                                missing_res = "CarbonDioxide";
                                break;
                            }
                            dis_WACO2 = true;
                            continue;
                        }
                    }
                    if (resources.Info(v, input.name).amount <= double.Epsilon)
                    {
                        inputs      = false;
                        missing_res = input.name;
                        break;
                    }
                }

                // if growing
                if (lighting && pressure && radiation && inputs)
                {
                    // increase growth
                    growth += g.crop_rate * elapsed_s;
                    growth  = Math.Min(growth, 1.0);

                    // notify the user when crop can be harvested
                    if (growth >= 0.99)
                    {
                        Message.Post(Lib.BuildString("On <b>", v.vesselName, "</b> the crop is ready to be harvested"));
                        growth = 1.0;
                    }
                }

                // update time-to-harvest
                double tta = (1.0 - growth) / g.crop_rate;

                // update issues
                string issue =
                    !inputs?Lib.BuildString("missing ", missing_res)
                        : !lighting ? "insufficient lighting"
                                : !pressure ? "insufficient pressure"
                                : !radiation ? "excessive radiation"
                                : string.Empty;

                // update protomodule data
                Lib.Proto.Set(m, "natural", natural);
                Lib.Proto.Set(m, "artificial", artificial);
                Lib.Proto.Set(m, "tta", tta);
                Lib.Proto.Set(m, "issue", issue);
                Lib.Proto.Set(m, "growth", growth);
            }
        }
Exemple #17
0
        public void Execute(Vessel v, Vessel_info vi, Vessel_resources resources, double elapsed_s)
        {
            // store list of crew to kill
            List <ProtoCrewMember> deferred_kills = new List <ProtoCrewMember>();

            // get input resource handler
            Resource_info res = input.Length > 0 ? resources.Info(v, input) : null;

            // determine message variant
            uint variant = vi.temperature < Settings.SurvivalTemperature ? 0 : 1u;

            // get product of all environment modifiers
            double k = Modifiers.Evaluate(v, vi, resources, modifiers);

            // for each crew
            foreach (ProtoCrewMember c in Lib.CrewList(v))
            {
                // get kerbal data
                KerbalData kd = DB.Kerbal(c.name);

                // skip rescue kerbals
                if (kd.rescue)
                {
                    continue;
                }

                // skip disabled kerbals
                if (kd.disabled)
                {
                    continue;
                }

                // get kerbal property data from db
                RuleData rd = kd.Rule(name);

                // if continuous
                double step;
                if (interval <= double.Epsilon)
                {
                    // influence consumption by elapsed time
                    step = elapsed_s;
                }
                // if interval-based
                else
                {
                    // accumulate time
                    rd.time_since += elapsed_s;

                    // determine number of steps
                    step = Math.Floor(rd.time_since / interval);

                    // consume time
                    rd.time_since -= step * interval;

                    // remember if a meal is consumed/produced in this simulation step
                    res.meal_happened |= step > 0.99;
                    if (output.Length > 0)
                    {
                        ResourceCache.Info(v, output).meal_happened |= step > 0.99;
                    }
                }

                // if continuous, or if one or more intervals elapsed
                if (step > double.Epsilon)
                {
                    // if there is a resource specified
                    if (res != null && rate > double.Epsilon)
                    {
                        // determine amount of resource to consume
                        double required = rate                                // consumption rate
                                          * k                                 // product of environment modifiers
                                          * step;                             // seconds elapsed or number of steps

                        // if there is no output
                        if (output.Length == 0)
                        {
                            // simply consume (that is faster)
                            res.Consume(required);
                        }
                        // if there is an output and monitor is false
                        else if (!monitor)
                        {
                            // transform input into output resource
                            // - rules always dump excess overboard (because it is waste)
                            Resource_recipe recipe = new Resource_recipe();
                            recipe.Input(input, required);
                            recipe.Output(output, required * ratio, true);
                            resources.Transform(recipe);
                        }
                        // if monitor then do not consume input resource and only produce output if resource percentage + monitor_offset is < 100%
                        else if ((res.amount / res.capacity) + monitor_offset < 1.0)
                        {
                            // simply produce (that is faster)
                            resources.Produce(v, output, required * ratio);
                        }
                    }

                    // degenerate:
                    // - if the environment modifier is not telling to reset (by being zero)
                    // - if the input threshold is reached if used
                    // - if this rule is resource-less, or if there was not enough resource in the vessel
                    if (input_threshold >= double.Epsilon)
                    {
                        if (res.amount >= double.Epsilon && res.capacity >= double.Epsilon)
                        {
                            trigger = (res.amount / res.capacity) + monitor_offset >= input_threshold;
                        }
                        else
                        {
                            trigger = false;
                        }
                    }
                    else
                    {
                        trigger = input.Length == 0 || res.amount <= double.Epsilon;
                    }

                    if (k > 0.0 && trigger)
                    {
                        rd.problem += degeneration                                   // degeneration rate per-second or per-interval
                                      * k                                            // product of environment modifiers
                                      * step                                         // seconds elapsed or by number of steps
                                      * Variance(c, variance);                       // kerbal-specific variance
                    }
                    // else slowly recover
                    else
                    {
                        rd.problem *= 1.0 / (1.0 + Math.Max(interval, 1.0) * step * 0.002);
                        rd.problem  = Math.Max(rd.problem, 0.0);
                    }
                }

                // kill kerbal if necessary
                if (rd.problem >= fatal_threshold)
                {
                    if (fatal_message.Length > 0)
                    {
                        Message.Post(breakdown ? Severity.breakdown : Severity.fatality, Lib.ExpandMsg(fatal_message, v, c, variant));
                    }

                    if (breakdown)
                    {
                        // trigger breakdown event
                        Misc.Breakdown(v, c);

                        // move back between warning and danger level
                        rd.problem = (warning_threshold + danger_threshold) * 0.5;

                        // make sure next danger message is shown
                        rd.message = 1;
                    }
                    else
                    {
                        deferred_kills.Add(c);
                    }
                }
                // show messages
                else if (rd.problem >= danger_threshold && rd.message < 2)
                {
                    if (danger_message.Length > 0)
                    {
                        Message.Post(Severity.danger, Lib.ExpandMsg(danger_message, v, c, variant));
                    }
                    rd.message = 2;
                }
                else if (rd.problem >= warning_threshold && rd.message < 1)
                {
                    if (warning_message.Length > 0)
                    {
                        Message.Post(Severity.warning, Lib.ExpandMsg(warning_message, v, c, variant));
                    }
                    rd.message = 1;
                }
                else if (rd.problem < warning_threshold && rd.message > 0)
                {
                    if (relax_message.Length > 0)
                    {
                        Message.Post(Severity.relax, Lib.ExpandMsg(relax_message, v, c, variant));
                    }
                    rd.message = 0;
                }
            }

            // execute the deferred kills
            foreach (ProtoCrewMember c in deferred_kills)
            {
                Misc.Kill(v, c);
            }
        }