Exemple #1
0
        private static SymbolicExpressionTreeNode MirrorTree(RegressionNodeModel regressionNode, IDictionary <int, RegressionNodeModel> dict,
                                                             IDictionary <int, IReadOnlyList <int> > trainingLeafRows,
                                                             IDictionary <int, IReadOnlyList <int> > testLeafRows,
                                                             IntValue nextId, IDataset data, IReadOnlyList <int> trainingRows, IReadOnlyList <int> testRows)
        {
            if (regressionNode.IsLeaf)
            {
                var i = nextId.Value++;
                dict.Add(i, regressionNode);
                trainingLeafRows.Add(i, trainingRows);
                testLeafRows.Add(i, testRows);
                return(new SymbolicExpressionTreeNode(new TextSymbol("Model " + i + "\n(" + trainingRows.Count + "/" + testRows.Count + ")")));
            }

            var pftext = "\npf = " + regressionNode.PruningStrength.ToString("0.###");
            var text   = regressionNode.SplitAttribute + " <= " + regressionNode.SplitValue.ToString("0.###");

            if (!double.IsNaN(regressionNode.PruningStrength))
            {
                text += pftext;
            }

            var textNode = new SymbolicExpressionTreeNode(new TextSymbol(text));
            IReadOnlyList <int> lTrainingRows, rTrainingRows;
            IReadOnlyList <int> lTestRows, rTestRows;

            RegressionTreeUtilities.SplitRows(trainingRows, data, regressionNode.SplitAttribute, regressionNode.SplitValue, out lTrainingRows, out rTrainingRows);
            RegressionTreeUtilities.SplitRows(testRows, data, regressionNode.SplitAttribute, regressionNode.SplitValue, out lTestRows, out rTestRows);

            textNode.AddSubtree(MirrorTree(regressionNode.Left, dict, trainingLeafRows, testLeafRows, nextId, data, lTrainingRows, lTestRows));
            textNode.AddSubtree(MirrorTree(regressionNode.Right, dict, trainingLeafRows, testLeafRows, nextId, data, rTrainingRows, rTestRows));

            return(textNode);
        }
Exemple #2
0
        private static void BuildPruningModel(RegressionNodeModel regressionNode, ILeafModel leaf, IReadOnlyList <int> trainingRows, IReadOnlyList <int> pruningRows, PruningState state, RegressionTreeParameters regressionTreeParams, CancellationToken cancellationToken)
        {
            //create regressionProblemdata from pruning data
            var vars        = regressionTreeParams.AllowedInputVariables.Concat(new[] { regressionTreeParams.TargetVariable }).ToArray();
            var reducedData = new Dataset(vars, vars.Select(x => regressionTreeParams.Data.GetDoubleValues(x, pruningRows).ToList()));
            var pd          = new RegressionProblemData(reducedData, regressionTreeParams.AllowedInputVariables, regressionTreeParams.TargetVariable);

            pd.TrainingPartition.Start = pd.TrainingPartition.End = pd.TestPartition.Start = 0;
            pd.TestPartition.End       = reducedData.Rows;

            //build pruning model
            int numModelParams;
            var model = leaf.BuildModel(trainingRows, regressionTreeParams, cancellationToken, out numModelParams);

            //record error and complexities
            var rmsModel = model.CreateRegressionSolution(pd).TestRootMeanSquaredError;

            state.pruningSizes.Add(regressionNode, pruningRows.Count);
            state.modelErrors.Add(regressionNode, rmsModel);
            state.modelComplexities.Add(regressionNode, numModelParams);
            if (regressionNode.IsLeaf)
            {
                state.nodeComplexities[regressionNode] = state.modelComplexities[regressionNode];
            }
            else
            {
                state.nodeComplexities.Add(regressionNode, state.nodeComplexities[regressionNode.Left] + state.nodeComplexities[regressionNode.Right] + 1);
            }
        }
 protected RegressionNodeModel(RegressionNodeModel original, Cloner cloner) : base(original, cloner)
 {
     IsLeaf         = original.IsLeaf;
     Model          = cloner.Clone(original.Model);
     SplitValue     = original.SplitValue;
     SplitAttribute = original.SplitAttribute;
     Left           = cloner.Clone(original.Left);
     Right          = cloner.Clone(original.Right);
     Parent         = cloner.Clone(original.Parent);
     NumSamples     = original.NumSamples;
 }
Exemple #4
0
        public void BuildModel(IReadOnlyList <int> trainingRows, IReadOnlyList <int> pruningRows, IScope statescope, ResultCollection results, CancellationToken cancellationToken)
        {
            var regressionTreeParams = (RegressionTreeParameters)statescope.Variables[DecisionTreeRegression.RegressionTreeParameterVariableName].Value;

            //start with one node
            Root = RegressionNodeModel.CreateNode(regressionTreeParams.TargetVariable, regressionTreeParams);

            //split into (overfitted tree)
            regressionTreeParams.Splitter.Split(this, trainingRows, statescope, cancellationToken);

            //prune
            regressionTreeParams.Pruning.Prune(this, trainingRows, pruningRows, statescope, cancellationToken);
        }
Exemple #5
0
        private static double SubtreeError(RegressionNodeModel regressionNode, IDictionary <RegressionNodeModel, int> pruningSizes,
                                           IDictionary <RegressionNodeModel, double> modelErrors)
        {
            if (regressionNode.IsLeaf)
            {
                return(modelErrors[regressionNode]);
            }
            var errorL = SubtreeError(regressionNode.Left, pruningSizes, modelErrors);
            var errorR = SubtreeError(regressionNode.Right, pruningSizes, modelErrors);

            errorL = errorL * errorL * pruningSizes[regressionNode.Left];
            errorR = errorR * errorR * pruningSizes[regressionNode.Right];
            return(Math.Sqrt((errorR + errorL) / pruningSizes[regressionNode]));
        }
Exemple #6
0
 private static void GetLeafDepths(RegressionNodeModel n, int depth, ICollection <int> res)
 {
     if (n == null)
     {
         return;
     }
     if (n.Left == null && n.Right == null)
     {
         res.Add(depth);
     }
     else
     {
         GetLeafDepths(n.Left, depth + 1, res);
         GetLeafDepths(n.Right, depth + 1, res);
     }
 }
 public ConfidenceRegressionNodeModel(RegressionNodeModel parent) : base(parent)
 {
 }
 private static RegressionNodeModel CreateNode(RegressionNodeModel parent, RegressionTreeParameters regressionTreeParams)
 {
     return(regressionTreeParams.LeafModel.ProvidesConfidence ? new ConfidenceRegressionNodeModel(parent) : new RegressionNodeModel(parent));
 }
 private RegressionNodeModel(RegressionNodeModel parent) : this(parent.TargetVariable)
 {
     Parent = parent;
     IsLeaf = true;
 }
Exemple #10
0
 protected RegressionNodeTreeModel(RegressionNodeTreeModel original, Cloner cloner) : base(original, cloner)
 {
     Root = cloner.Clone(original.Root);
 }
Exemple #11
0
        public static void Initialize(IScope stateScope)
        {
            var param = (RegressionTreeParameters)stateScope.Variables[DecisionTreeRegression.RegressionTreeParameterVariableName].Value;

            stateScope.Variables.Add(new Variable(RootVariableName, RegressionNodeModel.CreateNode(param.TargetVariable, param)));
        }