Exemple #1
0
 public void Crossover(ref Genome genome2, out Genome child1, out Genome child2)
 {
     int pos = (int)(random.NextDouble() * (double)Length);
     child1 = new Genome(Length, false);
     child2 = new Genome(Length, false);
     for (int i = 0; i < Length; i++)
     {
         if (i < pos)
         {
             child1.Genes[i] = Genes[i];
             child2.Genes[i] = genome2.Genes[i];
         }
         else
         {
             child1.Genes[i] = genome2.Genes[i];
             child2.Genes[i] = Genes[i];
         }
     }
 }
Exemple #2
0
 public abstract void CopyGeneInfo(Genome g);
Exemple #3
0
 public abstract void CopyGeneFrom(Genome src);
Exemple #4
0
 private void Mutate(Genome aGene)
 {
     if (EquationGenome.TheSeed.Next(100) < (int)(kMutationFrequency * 100.0))
     {
       	aGene.Mutate();
     }
 }
Exemple #5
0
 public void CheckForUndefinedFitness(Genome g)
 {
     if (double.IsNaN(g.CurrentFitness))
         g.CurrentFitness = 0.01f;
 }
Exemple #6
0
        public Genome <T> Evolve(List <Genome <T> > items)
        {
            Solutions.AddRange(items);

            for (int i = 0; i < GenerationCount; i++)
            {
                for (int k = 0; k < PopulationSize; k++)
                {
                    _firstGeneration.Invoke(Solutions[k]);
                    _fitnessValue.Invoke(Solutions[k]);
                }

                Solutions.OrderByDescending(t => t.Fitness);

                double minimalFitness = Solutions.Where(x => !x.Fitness.Equals(0)).Sum(t => t.Fitness) / PopulationSize -
                                        Solutions.Count(x => !x.Fitness.Equals(0));

                while (NextGeneration.Count < PopulationSize)
                {
                    for (int m = 0; m < Solutions.Count; m++)
                    {
                        if (NextGeneration.Count < PopulationSize)
                        {
                            if (Solutions[m].Fitness >= minimalFitness && rnd.NextDouble() <= CrossoverProbability)
                            {
                                if (_crossoverPartner == null)
                                {
                                    _crossoverPartner = Solutions[m];
                                }
                                else
                                {
                                    _crossedGenomes = _crossover.Invoke(_crossoverPartner, Solutions[m]);

                                    NextGeneration.Add(new Genome <T>(_crossedGenomes[0]));
                                    NextGeneration.Add(new Genome <T>(_crossedGenomes[1]));
                                    _crossoverPartner = null;
                                }
                            }

                            if (rnd.NextDouble() <= MutationProbability)
                            {
                                NextGeneration.Add(new Genome <T>(_mutation.Invoke(Solutions[m])));
                            }
                        }
                        else
                        {
                            break;
                        }
                    }
                }

                while (NextGeneration.Count > PopulationSize)
                {
                    NextGeneration.RemoveAt(NextGeneration.Count - 1);
                }

                if (_bestFitness != null)
                {
                    if (_bestFitness.Fitness <= Solutions[0].Fitness)
                    {
                        _bestFitness = Solutions[0];
                    }
                }
                else
                {
                    _bestFitness = Solutions[0];
                }

                Solutions.RemoveAll(t => t.Parameter != null);
                Solutions.AddRange(NextGeneration);
                NextGeneration.RemoveAll(t => t.Parameter != null);
            }
            return(_bestFitness);
        }
Exemple #7
0
        public void Start()
        {
            //Setup vars
            int popSize   = 200;
            int survivors = 70;

            //Init network, population
            Network n = new Network(2, 3, 3, 1);

            List <(double fitness, Genome genome)> population = new List <(double, Genome)>();

            for (int i = 0; i < popSize; i++)
            {
                population.Add((0, new Genome(2, 3, 3, 1)));
            }

            //Fitness func 0-4
            Func <Network, double> fitness = (Network net) =>
            {
                double score = 0;

                score -= Util.MeanSquaredLoss(new double[] { 0 }, n.Eval(new double[] { 0, 0 })) * 5000;
                score -= Util.MeanSquaredLoss(new double[] { 1 }, n.Eval(new double[] { 0, 1 })) * 5000;
                score -= Util.MeanSquaredLoss(new double[] { 1 }, n.Eval(new double[] { 1, 0 })) * 5000;
                score -= Util.MeanSquaredLoss(new double[] { 0 }, n.Eval(new double[] { 1, 1 })) * 5000;

                return(score);
            };

            //Start training
            int    epoch     = 0;
            double bestScore = double.MinValue;

            while (bestScore < -0.05)
            {
                for (int i = 0; i < population.Count; i++)
                {
                    //Get fitness of each
                    n.InsertGenome(population[i].genome);
                    population[i] = (fitness(n), population[i].genome);
                }

                //Order by fitness, kill off
                population = population.OrderByDescending(x => x.fitness).Take(survivors).ToList();
                bestScore  = population[0].fitness;

                Console.WriteLine("Gen {0}, best fit {1}", epoch, bestScore);

                //Parent selection
                List <(double, Genome)> offspring = new List <(double, Genome)>();
                while (offspring.Count < popSize - survivors)
                {
                    Genome[] parents = new Genome[2];
                    do
                    {
                        //Tournament
                        for (int i = 0; i < 2; i++)
                        {
                            parents[i] =
                                population.OrderBy(x => Util.Rand.Next()).
                                Take(7)
                                .OrderByDescending(x => x.fitness)
                                .First().genome;
                        }
                    }while (parents[0] == parents[1]);

                    //Breed and mutate
                    var children = parents[0].CrossoverUniform(parents[1]);

                    var childA = children.childA;
                    var childB = children.childB;

                    childA = Util.Rand.NextDouble() <= 0.1
                        ? childA.MutationDelta(3, 0.3, 0.3)
                        : childA;
                    offspring.Add((0, childA));

                    childB = Util.Rand.NextDouble() <= 0.1
                        ? childB.MutationDelta(3, 0.3, 0.3)
                        : childB;
                    offspring.Add((0, childB));
                }

                //Add offspring
                population.AddRange(offspring);

                epoch++;
            }

            TestXOR(n);

            Console.ReadKey();
        }
Exemple #8
0
 public abstract Genome UniformCrossover(Genome g);
        public override Genome Crossover(Genome g)
        {
            EquationGenome aGene1 = new EquationGenome();
            EquationGenome aGene2 = new EquationGenome();
            g.CopyGeneInfo(aGene1);
            g.CopyGeneInfo(aGene2);

            // Pick a random crossover point
            CrossoverPoint = TheSeed.Next(1, (int)Length);

            EquationGenome CrossingGene = (EquationGenome)g;
            for (int i = 0; i < CrossoverPoint; i++)
            {
                aGene1.TheArray.Add(CrossingGene.TheArray[i]);
                aGene2.TheArray.Add(TheArray[i]);
            }

            for (int j = CrossoverPoint; j < Length; j++)
            {
                aGene1.TheArray.Add(TheArray[j]);
                aGene2.TheArray.Add(CrossingGene.TheArray[j]);
            }

            // 50/50 chance of returning gene1 or gene2
            EquationGenome aGene = null;
            if (TheSeed.Next(2) == 1)
            {
                aGene = aGene1;
            }
            else
            {
                aGene = aGene2;
            }

            return aGene;
        }
 public override void CopyGeneInfo(Genome dest)
 {
     EquationGenome theGene = (EquationGenome)dest;
     theGene.Length = Length;
     theGene.TheMin = TheMin;
     theGene.TheMax = TheMax;
 }
 public void AddHuman(Genome genome)
 {
     this.Citizens.Add(genome);
 }
Exemple #12
0
 public Genome(Genome copy)
 {
     this.values  = new double[2][];
     this.Weights = copy.Weights;
     this.Biases  = copy.Biases;
 }
Exemple #13
0
 public Genome DeepCopy()
 {
     Genome g = new Genome(Length, false);
     Array.Copy(Genes, g.Genes, Length);
     return g;
 }
 public List <double> GetWeights() => Genome.Select(value => value.Data / 1000000.0).ToList();
Exemple #15
0
 public abstract Genome Crossover(Genome g);
        public override Genome Crossover2Point(Genome g)
        {
            EquationGenome aGene1 = new EquationGenome();
            EquationGenome aGene2 = new EquationGenome();
            g.CopyGeneInfo(aGene1);
            g.CopyGeneInfo(aGene2);

            // Pick a random crossover point
            int CrossoverPoint1 = TheSeed.Next(1, (int)Length);
            int CrossoverPoint2 = TheSeed.Next(CrossoverPoint1, (int)Length);
            // normalize
            if (CrossoverPoint1 > CrossoverPoint2)
            {
                int temp = CrossoverPoint1;
                CrossoverPoint1 = CrossoverPoint2;
                CrossoverPoint2 = temp;
            }

            EquationGenome CrossingGene = (EquationGenome)g;

            for (int j = 0; j < CrossoverPoint1; j++)
            {
                aGene1.TheArray.Add(TheArray[j]);
                aGene2.TheArray.Add(CrossingGene.TheArray[j]);
            }

            for (int j = CrossoverPoint1; j < CrossoverPoint2; j++)
            {
                aGene1.TheArray.Add(CrossingGene.TheArray[j]);
                aGene2.TheArray.Add(TheArray[j]);
            }

            for (int j = CrossoverPoint2; j < Length; j++)
            {
                aGene1.TheArray.Add(TheArray[j]);
                aGene2.TheArray.Add(CrossingGene.TheArray[j]);
            }

            // 50/50 chance of returning gene1 or gene2
            EquationGenome aGene = null;
            if (TheSeed.Next(2) == 1)
            {
                aGene = aGene1;
            }
            else
            {
                aGene = aGene2;
            }

            return aGene;
        }
Exemple #17
0
 public abstract Genome Crossover2Point(Genome g);
        public override Genome UniformCrossover(Genome g)
        {
            EquationGenome aGene1 = new EquationGenome();
            EquationGenome aGene2 = new EquationGenome();
            g.CopyGeneInfo(aGene1);
            g.CopyGeneInfo(aGene2);

            // swap genes randomly
            EquationGenome CrossingGene = (EquationGenome)g;
            for (int i = 0; i < Length; i++)
            {
                if (TheSeed.Next(100) % 2 == 0)
                {
                    aGene1.TheArray.Add(CrossingGene.TheArray[i]);
                    aGene2.TheArray.Add(TheArray[i]);
                }
                else
                {
                    aGene1.TheArray.Add(TheArray[i]);
                    aGene2.TheArray.Add(CrossingGene.TheArray[i]);
                }

            }

            // 50/50 chance of returning gene1 or gene2
            EquationGenome aGene = null;
            if (TheSeed.Next(2) == 1)
            {
                aGene = aGene1;
            }
            else
            {
                aGene = aGene2;
            }

            return aGene;
        }
 /// <summary>
 /// Create the *initial* genomes by repeated calling the supplied fitness function
 /// </summary>
 private void CreateGenomes()
 {
     for (int i = 0; i < PopulationSize; i++)
     {
         Genome g = new Genome(GenomeSize);
         CurrentGeneration.Add(g);
     }
 }
Exemple #20
0
        public override void CopyGeneFrom(Genome src)
        {
            EquationGenome theGene = (EquationGenome)src;
            for (int i = 0; i < TheArray.Count; i++)
            {
                TheArray[i] = (Gene)theGene.TheArray[i];
            }

            Length = theGene.Length;
            TheMin = theGene.TheMin;
            TheMax = theGene.TheMax;
            CurrentFitness = theGene.CurrentFitness;
        }