Exemple #1
0
        public GPOut Compute(Matrix <double> mTr, Matrix <double> mTeTr, Vector <double> vTrY)
        {
            var Mtr = (mTr).RowCount;

            var gpOut = new GPOut();

            var Kte = _kernel.Main(DistanceMatrix.Instance.Matrix, _length);

            if (Mtr > 0)
            {
                var Kxx_p_noise = _kernel.Main(mTr, _length);
                for (int i = 0; i < Mtr; i++)
                {
                    Kxx_p_noise[i, i] += _noise;
                }

                var svd1 = Kxx_p_noise.Svd();

                for (int i = 0; i < Mtr; i++)
                {
                    svd1.S[i] = svd1.S[i] > Double.Epsilon ? 1.0 / svd1.S[i] : 0;
                }

                var tmp = _kernel.Main(mTeTr, _length) * svd1.U;

                gpOut.mu = tmp * (svd1.S.PointwiseMultiply(svd1.U.Transpose() * (vTrY)));
                var cov = tmp * Matrix <double> .Build.DenseOfDiagonalVector(svd1.S.PointwiseSqrt());

                cov = cov * cov.Transpose();
                cov = Kte /*.SubMatrix(0,100,0,100) */ - cov;
                var svd2 = cov.Svd();
                for (int i = 0; i < Mte; i++)
                {
                    if (svd2.S[i] < Double.Epsilon)
                    {
                        svd2.S[i] = 0.0;
                    }
                }
                gpOut.proj = svd2.U * Matrix <double> .Build.DenseOfDiagonalVector(svd2.S.PointwiseSqrt());

                gpOut.sd95 = 1.98 * (gpOut.proj * gpOut.proj.Transpose()).Diagonal().PointwiseSqrt();
            }
            else
            {
                gpOut.sd95 = 1.98 * (Kte.Diagonal()).PointwiseSqrt();
                var svd = Kte.Svd();
                gpOut.proj = svd.U * Matrix <double> .Build.DenseOfDiagonalVector(svd.S.PointwiseSqrt());

                gpOut.mu = Vector <double> .Build.DenseOfArray(Enumerable.Range(0, Mte).Select(_ => 0d).ToArray());
            }


            return(gpOut);
        }
Exemple #2
0
        public GPOut Predict(double TestPointX, Svd <double> svd1 = null, int results = 1)
        {
            //if(results< TrainingPointsX.Count)
            //    results = TrainingPointsX.Count;
            double[] TestPointsX;
            if (results > 1)
            {
                TestPointsX = MathNet.Numerics.Generate.LinearSpaced(results, TrainingPointsX.Min(), TestPointX);
            }
            else
            {
                TestPointsX = new double[] { TestPointX }
            };

            if (Kte == null || results != Kte.ColumnCount)
            {
                if (results == 1)
                {
                    Kte = kernel.Main(Matrix <double> .Build.Dense(1, 1), length);
                }
                else
                {
                    Kte = kernel.Main(DistanceMatrix.Instance.Matrix.SubMatrix(0, results, 0, results), length);
                }
            }


            var          gpOut = new GPOut();
            Svd <double> svd;

            if (TrainingPointsX.Count > 0 && svd1 != null /* && TestPointsX.Length>= TrainingPointsX.Count*/)
            {
                (gpOut.mu, svd) = MathHelper.Evaluate(TestPointsX, TrainingPointsY.ToArray(), TrainingPointsX.ToArray(), kernel, length, svd1, Kte);
            }
            else
            {
                gpOut.mu = Vector <double> .Build.DenseOfArray(Enumerable.Range(0, results).Select(_ => 0d).ToArray());

                //gpOut.sd95 = 1.98 * (Kte.Diagonal()).PointwiseSqrt();
                svd = Kte.Svd();
            }

            gpOut.proj = svd.U * Matrix <double> .Build.DenseOfDiagonalVector(svd.S.PointwiseSqrt());

            gpOut.sd95 = 1.98 * (gpOut.proj * gpOut.proj.Transpose()).Diagonal().PointwiseSqrt();
            gpOut.X    = TestPointsX;

            return(gpOut);
        }
    }
Exemple #3
0
        public static (Vector <double>, Svd <double>) Evaluate(double[] testPointsX, double[] trainingPointsX, double[] trainingPointsY, IMatrixkernel kernel, double length, Svd <double> svd1, Matrix <double> Kte)
        {
            var          gpOut = new GPOut();
            Svd <double> svd;

            var             dmTeTr = MathHelper.ComputeDistanceMatrix(testPointsX, trainingPointsX.ToArray());
            var             tmp    = kernel.Main(dmTeTr, length) * svd1.U;
            Vector <double> v      = Vector <double> .Build.DenseOfEnumerable(trainingPointsY);

            var mu  = tmp * (svd1.S.PointwiseMultiply(svd1.U.Transpose() * v));
            var cov = tmp * Matrix <double> .Build.DenseOfDiagonalVector(svd1.S.PointwiseSqrt());

            cov = cov * cov.Transpose();
            cov = Kte - cov;
            svd = cov.Svd();
            for (int i = 0; i < svd.S.Count; i++)
            {
                svd.S[i] = svd.S[i] < Double.Epsilon ? 0 : svd.S[i];
            }

            return(mu, svd);
        }
Exemple #4
0
        public GPOut Predict(double[] trainingPointsX, double[] trainingPointsY, params double[] TestPointsX)
        {
            if (TestPointsX.Count() == 1)
            {
                Kte = kernel.Main(Matrix <double> .Build.Dense(1, 1), length);
            }
            else
            {
                Kte = kernel.Main(DistanceMatrix.Instance.Matrix.SubMatrix(0, TestPointsX.Count(), 0, TestPointsX.Count()), length);
            }
            var svd1 = Task.Run(() =>
                                trainingPointsX.Length > 0 ? Update(trainingPointsX, trainingPointsY) : GetDefaultSvd());

            var          gpOut = new GPOut();
            Svd <double> svd;

            (gpOut.mu, svd) = Task.Run(() =>
            {
                if (trainingPointsX.Count() > 0)
                {
                    return(Evaluate(TestPointsX, trainingPointsX.ToArray(), trainingPointsY.ToArray(), kernel, length, svd1.Result, Kte));
                }
                else
                {
                    return(Vector <double> .Build.DenseOfArray(Enumerable.Range(0, TestPointsX.Count()).Select(_ => 0d).ToArray()), Kte.Svd());
                    //gpOut.sd95 = 1.98 * (Kte.Diagonal()).PointwiseSqrt();
                }
            }).Result;

            gpOut.proj = svd.U * Matrix <double> .Build.DenseOfDiagonalVector(svd.S.PointwiseSqrt());

            gpOut.sd95 = 1.98 * (gpOut.proj * gpOut.proj.Transpose()).Diagonal().PointwiseSqrt();
            gpOut.X    = TestPointsX;

            return(gpOut);
        }
        public static IEnumerable <KeyValuePair <DateTime, Tuple <double, double>[]> > GetPositionsAndVelocities(this GPOut gpout, DateTime start, double control)
        {
            double lasttime = 0;
            double lastvariance;
            double lastposition;
            double velocity = 0;

            using (IEnumerator <double> i2 = gpout.mu.ToList().GetEnumerator())
                //using (IEnumerator<double> i1 = gpout.X.ToList().GetEnumerator())
                using (IEnumerator <double> i3 = gpout.sd95.ToList().GetEnumerator())
                    foreach (double time in gpout.X.ToArray())
                    {
                        lastposition = i2.Current;
                        //lasttime = i1.Current;
                        lastvariance = i3.Current;
                        /* while (i1.MoveNext() &&*/
                        i2.MoveNext(); i3.MoveNext();
                        //{
                        //double time=i1.Current;

                        if ((time - lasttime) != 0)
                        {
                            velocity = (i2.Current - lastposition) / (time - lasttime);
                        }

                        yield return(new KeyValuePair <DateTime, Tuple <double, double>[]>(start + TimeSpan.FromSeconds(time),
                                                                                           new[] {
                            Tuple.Create(i2.Current + control, i3.Current),
                            Tuple.Create(velocity, i3.Current)
                            //});
                        }));

                        lastposition = i2.Current;
                        lasttime     = time;// i1.Current;
                        lastvariance = i3.Current;
                    }
        }
        public static IEnumerable <KeyValuePair <DateTime, Tuple <double, double> > > GetVelocities(this GPOut gpout, DateTime dt)
        {
            double lastposition = 0;
            double lasttime     = 0;
            double lastvariance = 0;

            using (var i1 = gpout.X.ToList().GetEnumerator())
                using (var i2 = gpout.mu.ToList().GetEnumerator())
                    using (var i3 = gpout.sd95.ToList().GetEnumerator())
                    {
                        lastposition = i2.Current;
                        lasttime     = i1.Current;
                        lastvariance = i3.Current;
                        while (i1.MoveNext() && i2.MoveNext() && i3.MoveNext())
                        {
                            var velocity = (i2.Current - lastposition) / TimeSpan.FromDays(i1.Current - lasttime).TotalSeconds;

                            yield return(new KeyValuePair <DateTime, Tuple <double, double> >(dt + TimeSpan.FromSeconds(i1.Current), Tuple.Create(i2.Current, i3.Current)));

                            lastposition = i2.Current;
                            lasttime     = i1.Current;
                            lastvariance = i3.Current;
                        }
                    }
        }
 public static IEnumerable <KeyValuePair <DateTime, Tuple <double, double> > > GetPositions(this GPOut gpout, DateTime dt)
 {
     using (var i1 = gpout.X.ToList().GetEnumerator())
         using (var i2 = gpout.mu.ToList().GetEnumerator())
             using (var i3 = gpout.sd95.ToList().GetEnumerator())
             {
                 while (i1.MoveNext() && i2.MoveNext() && i3.MoveNext())
                 {
                     yield return(new KeyValuePair <DateTime, Tuple <double, double> >(dt + TimeSpan.FromSeconds(i1.Current), Tuple.Create(i2.Current, i3.Current)));
                 }
             }
 }
 public static KeyValuePair <DateTime, Tuple <double, double> > Last(this GPOut gpout, DateTime dt)
 {
     return(new KeyValuePair <DateTime, Tuple <double, double> >
                (dt + TimeSpan.FromDays(gpout.X.Last()), Tuple.Create(gpout.mu.Last(), gpout.sd95.Last())));
 }