Exemple #1
0
        public static List <Genome> GenerateGenomes(int m_populationSize, Population pPreviousPopulation)
        {
            List <Genome> m_nextGeneration = new List <Genome>();

            for (int i = 0; i < m_populationSize; i += 2)
            {
                int    pidx1 = RouletteSelection(pPreviousPopulation);
                int    pidx2 = RouletteSelection(pPreviousPopulation);
                Genome parent1;
                Genome parent2;
                Genome child1;
                Genome child2;
                parent1 = pPreviousPopulation[pidx1];
                parent2 = pPreviousPopulation[pidx2];

                if (GA.mRandom.NextDouble() < CrossoverRate)
                {
                    GA.Crossover(parent1, parent2, out child1, out child2);
                }
                else
                {
                    child1 = new Genome(parent1);
                    child2 = new Genome(parent2);
                }

                Mutator(child1);
                Mutator(child2);

                m_nextGeneration.Add(new Genome(child1));
                m_nextGeneration.Add(new Genome(child2));
            }

            return(m_nextGeneration);
        }
Exemple #2
0
 public static void Mutator(Genome pGenome)
 {
     for (int pos = 0; pos < Genome.mLength; pos++)
     {
         if (GA.mRandom.NextDouble() < MutationRate)
         {
             pGenome[pos] = GA.GetRandomGene();
         }
     }
 }
Exemple #3
0
        public static void Main(string[] args)
        {
            List <Population> mPopulations = new List <Population>();

            GA.CrossoverRate = 0.5;
            GA.MutationRate  = 0.1;

            Genome.mLength = 10;

            int    m_populationSize = 10;
            double m_selectionRate  = 0.8;            //80% kills in population
            int    m_generationSize = 2000;


            Population pop = new Population(0, GA.GenerateInitialGenomes(m_populationSize));

            pop.DoMagic(m_selectionRate);
            pop.Info();

            mPopulations.Add(pop);

            for (int i = 0; i < m_generationSize; i++)
            {
                Population pop2 = new Population(i, GA.GenerateGenomes(m_populationSize, mPopulations[i]));

                pop2.DoMagic(m_selectionRate);
                pop2.Info();

                mPopulations.Add(pop2);

                if (pop2.mMaxFitness > 9.8)
                {
                    break;
                }
            }

            mPopulations.Sort(delegate(Population x, Population y) {
                if (x.GetFitness() > y.GetFitness())
                {
                    return(1);
                }
                else if (x.GetFitness() == y.GetFitness())
                {
                    return(0);
                }
                else
                {
                    return(-1);
                }
            });

            mPopulations[mPopulations.Count - 1].Output();
        }