public void Configure() { this.fInputLayer = (TNeuralLayer) new TInputNeuralLayer(this.fNInput, true); TNeuralLayer Layer = (TNeuralLayer) new THiddenNeuralLayer(this.kB5uny9D9); Layer.Connect(this.fInputLayer); this.rCHgEckPw = new ArrayList(); this.HnCyxyTcM = 1; this.rCHgEckPw.Add((object)Layer); this.fOutputLayer = (TNeuralLayer) new TOutputNeuralLayer(this.fNOutput, this.wAeTg5Tjg); this.fOutputLayer.Connect(Layer); this.fOutput = new double[this.fNOutput]; this.cGqCj2YUM = new double[this.fNOutput]; this.fMaxNX = Math.Max(this.fNInput + 1, this.fNOutput); this.fMaxNX = Math.Max(this.fMaxNX, this.kB5uny9D9 + 1); this.fMaxNY = 3; this.fNPattern = 0; this.wm8s050QY = 0.0; this.MSg9cpEpW = 0.0; this.V8laR9xb7 = new Graph(); this.V8laR9xb7.Title = "title"; this.V8laR9xb7.LineColor = Color.Red; this.XOwvCEen2 = new Graph(); this.XOwvCEen2.Title = "title"; this.XOwvCEen2.LineColor = Color.Blue; this.x1tDaZE2v = false; }
public void Disconnect(TNeuralLayer Layer) { foreach (TNeuron tneuron in this.fNeuron) { foreach (TNeuron Neuron in Layer.fNeuron) tneuron.Disconnect(Neuron); } }
public void Disconnect(TNeuralLayer Layer) { foreach (TNeuron tneuron in this.fNeuron) { foreach (TNeuron Neuron in Layer.fNeuron) { tneuron.Disconnect(Neuron); } } }
public void AddHiddenLayer(int NHidden) { TNeuralLayer Layer1 = (TNeuralLayer)this.rCHgEckPw[this.rCHgEckPw.Count - 1]; TNeuralLayer Layer2 = (TNeuralLayer) new THiddenNeuralLayer(NHidden); this.fOutputLayer.Disconnect(Layer1); this.fOutputLayer.Connect(Layer2); Layer2.Connect(Layer1); this.rCHgEckPw.Add((object)Layer2); ++this.HnCyxyTcM; this.kB5uny9D9 += NHidden; this.fMaxNX = Math.Max(this.fMaxNX, NHidden + 1); TPerceptron tperceptron = this; int num = tperceptron.fMaxNY + 1; tperceptron.fMaxNY = num; }