Exemple #1
0
        /// <summary>
        /// Return multiplication of two polynoms using nonrecursive FFT
        /// </summary>
        /// <param name="p">First polynom</param>
        /// <param name="q">Second polynom</param>
        /// <returns>p * q</returns>
        public static Polynom operator *(Polynom p, Polynom q)
        {
            p = p.Clone();
            q = q.Clone();
            p.Trim();
            q.Trim();

            //set rank of mul
            int count = p.Count + q.Count - 1;

            if (p.Count == 0 || q.Count == 0)
            {
                throw new ArgumentException("Polynom must have at least one member.");
            }

            // So FFT returns polynom with bigger rank
            while (p.Count < count)
            {
                p.Add(0);
                p = p.ComplementWithNulls();
            }
            while (q.Count < count)
            {
                q.Add(0);
                q = q.ComplementWithNulls();
            }

            // Nonrecursive FFT
            Polynom p_vals = FFT.NonrecursiveFFT(p);
            Polynom q_vals = FFT.NonrecursiveFFT(q);

            Polynom r_vals = new Polynom(count).ComplementWithNulls();

            count = r_vals.Count;
            for (int i = 0; i < count; i++)
            {
                Complex a = p_vals[i];
                Complex b = q_vals[i];

                r_vals[i] = a * b;
            }

            Polynom ret = FFT.NonrecursiveFFT(r_vals, true) / count;

            ret.Trim();
            return(ret);
        }
Exemple #2
0
        static void TestWithShortPolynoms()
        {
            Polynom p, q, r;

            // Example 1
            p = new Polynom((Complex)(-2)); // -2
            q = new Polynom(15, 0, 0);      // 15 + 0x + 0x^2
            r = p * q;
            Console.WriteLine("Example {0}:\np =\n{1}\nq =\n{2}\np*q =\n{3}", 1, p, q, r);

            // Example 2
            p = new Polynom(Complex.ImaginaryOne); // i
            q = new Polynom((Complex)3);           // 3
            r = p * q;
            Console.WriteLine("Example {0}:\np =\n{1}\nq =\n{2}\np*q =\n{3}", 2, p, q, r);

            // Example 3
            p = new Polynom(1, 3);  // 1 + 3x
            q = new Polynom(-2, 1); // -2 + x
            r = p * q;
            Console.WriteLine("Example {0}:\np =\n{1}\nq =\n{2}\np*q =\n{3}", 3, p, q, r);

            // Example 4
            // The same result in WolframAlpha:
            // http://www.wolframalpha.com/input/?i=%28%282%2B4i%29+%2B+%282%2B8i%29x+%2B+%282%2B3i%29x%5E2%29+*+%282+%2B+%287+%2B+3i%29x%29
            p = new Polynom(new Complex(2, 4), new Complex(2, 8), new Complex(2, 3));
            q = new Polynom(new Complex(2, 0), new Complex(7, 3));
            r = p * q;
            Console.WriteLine("Example {0}:\np =\n{1}\nq =\n{2}\np*q =\n{3}", 4, p, q, r);

            // Example 5
            // In this case the rank of the result is not pow of 2
            p = new Polynom(1, 2);
            q = new Polynom(1, 2, 3, 4, 5);
            r = p * q;
            Console.WriteLine("Example {0}:\np =\n{1}\nq =\n{2}\np*q =\n{3}", 4, p, q, r);
        }
Exemple #3
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="p">Polynom. Must have pow of 2 member. Maybe you can use .ComplementWithNulls()</param>
        /// <param name="reversed">If true, the method will make reversed FFT (interpolation)</param>
        /// <returns></returns>
        public static Polynom NonrecursiveFFT(Polynom p, bool reversed = false)
        {
            int layersCount = (int)Math.Ceiling(Math.Log(p.Count, 2));

            if (1 << layersCount != p.Count)
            {
                throw new ArgumentException("Polynom must have pow of 2 members. Maybe you want to use .ComplementWithNulls() methdo.");
            }

            //Permuts coefficients of p so they would suit the coefficients in the last layer of FFT
            Polynom new_p = new Polynom(p.Count);

            for (int i = 0; i < p.Count; i++)
            {
                int pom_i = i;
                int new_i = 0;
                int s     = p.Count / 2;
                for (int l = 0; l < layersCount; l++)
                {
                    if (pom_i % 2 == 1)
                    {
                        pom_i--;
                        new_i += s;
                    }
                    pom_i /= 2;
                    s     /= 2;
                }
                new_p[new_i] = p[i];
            }
            p = new_p;

            for (int layer = 1; layer <= layersCount; layer++)   //
            {
                int nodeSize  = 1 << layer;
                int nodeCount = p.Count / nodeSize; //division is integer

                Complex omega = ComplexUtils.GetSqrtOfOne(nodeSize);
                if (reversed)
                {
                    omega = 1 / omega;
                }

                new_p = new Polynom(p.Count);
                for (int nodeI = 0; nodeI < nodeCount; nodeI++)
                {
                    Complex x = 1;
                    for (int i = 0; i < nodeSize / 2; i++)
                    {
                        Complex c1 = p[nodeI * nodeSize + i];
                        Complex c2 = p[nodeI * nodeSize + i + nodeSize / 2];

                        new_p[nodeI * nodeSize + i] = c1 + x * c2;
                        new_p[nodeI * nodeSize + i + nodeSize / 2] = c1 - x * c2;

                        x *= omega;
                    }
                }
                p = new_p;

                //Uncomment to see how the algorithm works
                //Console.WriteLine("Layer {0}:", layer);
                //Console.WriteLine(p);
                //Console.WriteLine();
            }
            return(p);
        }