public static void ComputeCorrectiveImpulse(ref BodyVelocities wsvA, ref BodyVelocities wsvB, ref TangentFriction.Projection data, ref Jacobians jacobians,
                                                    ref Vector <float> maximumImpulse, ref Vector2Wide accumulatedImpulse, out Vector2Wide correctiveCSI)
        {
            Matrix2x3Wide.TransformByTransposeWithoutOverlap(wsvA.Linear, jacobians.LinearA, out var csvaLinear);
            Matrix2x3Wide.TransformByTransposeWithoutOverlap(wsvA.Angular, jacobians.AngularA, out var csvaAngular);
            Matrix2x3Wide.TransformByTransposeWithoutOverlap(wsvB.Linear, jacobians.LinearA, out var csvbLinear);
            Matrix2x3Wide.TransformByTransposeWithoutOverlap(wsvB.Angular, jacobians.AngularB, out var csvbAngular);
            //Note that the velocity in constraint space is (csvaLinear - csvbLinear + csvaAngular + csvbAngular).
            //The subtraction there is due to sharing the linear jacobian between both bodies3D.
            //In the following, we need to compute the constraint space *violating* velocity- which is the negation of the above velocity in constraint space.
            //So, (csvbLinear - csvaLinear - (csvaAngular + csvbAngular)).
            Vector2Wide.Subtract(csvbLinear, csvaLinear, out var csvLinear);
            Vector2Wide.Add(csvaAngular, csvbAngular, out var csvAngular);
            Vector2Wide.Subtract(csvLinear, csvAngular, out var csv);

            Symmetric2x2Wide.TransformWithoutOverlap(csv, data.EffectiveMass, out var csi);

            var previousAccumulated = accumulatedImpulse;

            Vector2Wide.Add(accumulatedImpulse, csi, out accumulatedImpulse);
            //The maximum force of friction depends upon the normal impulse. The maximum is supplied per iteration.
            Vector2Wide.Length(accumulatedImpulse, out var accumulatedMagnitude);
            //Note division by zero guard.
            var scale = Vector.Min(Vector <float> .One, maximumImpulse / Vector.Max(new Vector <float>(1e-16f), accumulatedMagnitude));

            Vector2Wide.Scale(accumulatedImpulse, scale, out accumulatedImpulse);

            Vector2Wide.Subtract(accumulatedImpulse, previousAccumulated, out correctiveCSI);
        }
 public static void Solve(ref Vector3Wide tangentX, ref Vector3Wide tangentY, ref TangentFriction.Projection projection, ref BodyInertias inertiaA, ref BodyInertias inertiaB, ref Vector <float> maximumImpulse, ref Vector2Wide accumulatedImpulse, ref BodyVelocities wsvA, ref BodyVelocities wsvB)
 {
     ComputeJacobians(ref tangentX, ref tangentY, ref projection.OffsetA, ref projection.OffsetB, out var jacobians);
     ComputeCorrectiveImpulse(ref wsvA, ref wsvB, ref projection, ref jacobians, ref maximumImpulse, ref accumulatedImpulse, out var correctiveCSI);
     ApplyImpulse(ref jacobians, ref inertiaA, ref inertiaB, ref correctiveCSI, ref wsvA, ref wsvB);
 }
 public static void WarmStart(ref Vector3Wide tangentX, ref Vector3Wide tangentY, ref TangentFriction.Projection projection, ref BodyInertias inertiaA, ref BodyInertias inertiaB,
                              ref Vector2Wide accumulatedImpulse, ref BodyVelocities wsvA, ref BodyVelocities wsvB)
 {
     ComputeJacobians(ref tangentX, ref tangentY, ref projection.OffsetA, ref projection.OffsetB, out var jacobians);
     //TODO: If the previous frame and current frame are associated with different time steps, the previous frame's solution won't be a good solution anymore.
     //To compensate for this, the accumulated impulse should be scaled if dt changes.
     ApplyImpulse(ref jacobians, ref inertiaA, ref inertiaB, ref accumulatedImpulse, ref wsvA, ref wsvB);
 }