GetBoolean() public méthode

Get the specified data item as a boolean.
public GetBoolean ( int i ) : bool
i int
Résultat bool
        /// <summary>
        /// Get the magnitude of the specified input.
        /// </summary>
        /// <param name="input">The input to calculate the magnitude for.</param>
        /// <returns>The magnitude of the specified pattern.</returns>
        public double Magnitude(BiPolarNeuralData input)
        {
            double result;

            result = 0;
            for (int i = 0; i < this.layerF1.NeuronCount; i++)
            {
                result += input.GetBoolean(i) ? 1 : 0;
            }
            return result;
        }
        /// <summary>
        /// Set the input to the neural network.
        /// </summary>
        /// <param name="input">The input.</param>
        private void SetInput(BiPolarNeuralData input)
        {
            double activation;

            for (int i = 0; i < this.layerF1.NeuronCount; i++)
            {
                activation = (input.GetBoolean(i) ? 1 : 0)
                        / (1 + this.a1 * ((input.GetBoolean(i) ? 1 : 0) + this.b1) + this.c1);
                this.outputF1.SetBoolean(i, (activation > 0));
            }
        }
        /// <summary>
        /// Compute the output from the F1 layer.
        /// </summary>
        /// <param name="input">The input to the F1 layer.</param>
        private void ComputeF1(BiPolarNeuralData input)
        {
            double sum, activation;

            for (int i = 0; i < this.layerF1.NeuronCount; i++)
            {
                sum = this.synapseF1toF2.WeightMatrix[i, this.winner]
                        * (this.outputF2.GetBoolean(this.winner) ? 1 : 0);
                activation = ((input.GetBoolean(i) ? 1 : 0) + this.d1 * sum - this.b1)
                        / (1 + this.a1
                                * ((input.GetBoolean(i) ? 1 : 0) + this.d1 * sum) + this.c1);
                this.outputF1.SetBoolean(i, activation > 0);
            }
        }