private string FormatInfoK(OdometerFrame frame) { StringBuilder sb = new StringBuilder(); sb.AppendLine(string.Format("fx: {0}", frame.MatK[0, 0].Value.ToString("F4"))); sb.AppendLine(string.Format("fy: {0}", frame.MatK[1, 1].Value.ToString("F4"))); sb.AppendLine(string.Format("px: {0}", frame.MatK[0, 2].Value.ToString("F4"))); sb.AppendLine(string.Format("py: {0}", frame.MatK[1, 2].Value.ToString("F4"))); infoK.Text = sb.ToString(); return(sb.ToString()); }
public static OdometerFrame GetOdometerFrame(Mat left, Mat right, Feature2D detector, Feature2D descriptor, DistanceType distanceType, double maxDistance, Image <Arthmetic, double> K, double takeBest = 1.0) { var match = MatchImagePair.Match(left, right, detector, descriptor, distanceType, maxDistance); var lps = match.LeftPointsList.Take((int)(match.LeftPoints.Size * takeBest)); var rps = match.RightPointsList.Take((int)(match.RightPoints.Size * takeBest)); var lps_n = lps.ToList(); var rps_n = rps.ToList(); var H = EstimateHomography(lps_n, rps_n, K); if (IsPureRotation(H)) { OdometerFrame odometerFrame = new OdometerFrame(); odometerFrame.Rotation = RotationConverter.MatrixToEulerXYZ(H); odometerFrame.RotationMatrix = RotationConverter.EulerXYZToMatrix(odometerFrame.Rotation); odometerFrame.MatK = K; odometerFrame.Match = match; odometerFrame.Translation = new Image <Arthmetic, double>(1, 3); return(odometerFrame); } else { if (!FindTwoViewsMatrices(lps_n, rps_n, K, out var F, out var E, out var R, out var t, out var X)) { return(null); } OdometerFrame odometerFrame = new OdometerFrame(); odometerFrame.Rotation = RotationConverter.MatrixToEulerXYZ(R); odometerFrame.RotationMatrix = R; odometerFrame.MatK = K; odometerFrame.Match = match; Image <Arthmetic, double> C = R.T().Multiply(t).Mul(-1); odometerFrame.Translation = C.Mul(1.0 / C.Norm); return(odometerFrame); } }
private static void DecomposeTransformationMatrices(Dataset dataset, TimeSpan interval) { DatasetFrame prev = null; foreach (var frame in dataset.Frames) { var translation = new Emgu.CV.Image <Arthmetic, double>(1, 3); for (int i = 0; i < 3; ++i) { translation[i, 0] = frame.TransformationMatrix[i, 3]; } var rotationMatrix = frame.TransformationMatrix.GetSubRect(new Rectangle(0, 0, 3, 3)); var euler = RotationConverter.MatrixToEulerXYZ(rotationMatrix); OdometerFrame odometry = new OdometerFrame() { TimeDiff = interval, Translation = translation, Rotation = euler, Velocity = null, AngularVelocity = null, }; if (prev != null) { odometry.TranslationDiff = odometry.Translation - prev.Odometry.Translation; odometry.RotationDiff = odometry.Rotation - prev.Odometry.Rotation; } else { odometry.TranslationDiff = new Emgu.CV.Image <Arthmetic, double>(1, 3); odometry.RotationDiff = new Emgu.CV.Image <Arthmetic, double>(1, 3); } frame.Odometry = odometry; prev = frame; } }
private void UdpateFrame(int n) { if (Frames == null || n >= Frames.Count - Step || n < 0) { isRunning = false; nextFrameTimer.Stop(); return; } Dispatcher.BeginInvoke((Action)(() => { currentFrame = n; var frame = frames[n]; var frame2 = frames[n + Step]; var mat = CvInvoke.Imread(frame.ImageFile, Emgu.CV.CvEnum.ImreadModes.Color).ToImage <Bgr, byte>(); var mat2 = CvInvoke.Imread(frame2.ImageFile, Emgu.CV.CvEnum.ImreadModes.Color).ToImage <Bgr, byte>(); try { double maxDistance = 20.0; OdometerFrame odometerFrame = FindTransformation.GetOdometerFrame(mat.Mat, mat2.Mat, Detector, Descriptor, DistanceType, maxDistance, K); if (odometerFrame != null) { videoViewer.Source = new BitmapImage(new Uri(frame.ImageFile, UriKind.Absolute)); recursive = true; frameProgression.Value = n; recursive = false; frameCurrentLabel.Content = n; totalRotation = odometerFrame.RotationMatrix.Multiply(totalRotation); var rotationEuler = RotationConverter.MatrixToEulerXYZ(totalRotation); totalTranslation = totalTranslation + odometerFrame.Translation; var refTranslation = frame2.Odometry.Translation.Sub(frames[0].Odometry.Translation); var refRotation = frames[0].Odometry.RotationMatrix.T().Multiply(frame2.Odometry.RotationMatrix); var refRotationEuler = RotationConverter.MatrixToEulerXYZ(refRotation); var refTranslationDiff = frame2.Odometry.Translation.Sub(frame.Odometry.Translation); var refRotationDiff = frame.Odometry.RotationMatrix.T().Multiply(frame2.Odometry.RotationMatrix); var refRotationDiffEuler = RotationConverter.MatrixToEulerXYZ(refRotationDiff); infoReference.Text = FormatInfo(refTranslation, refRotationEuler, "Ref Cumulative"); infoReferenceDiff.Text = FormatInfo(refTranslationDiff, refRotationDiffEuler, "Ref Diff"); infoComputed.Text = FormatInfo(odometerFrame.Translation, odometerFrame.Rotation, "Comp Diff"); infoComputedCumulative.Text = FormatInfo(totalTranslation, rotationEuler, "Comp Cumulative"); infoK.Text = FormatInfoK(odometerFrame); MatchDrawer.DrawFeatures(mat.Mat, mat2.Mat, odometerFrame.Match, TakeBest, matchedView); } } catch (Exception e) { infoComputed.Text = "Error!"; } if (isRunning) { nextFrameTimer.Start(); } })); }
private void UdpateFrame(int n) { if (Frames == null || n >= Frames.Count - Step || n < 0) { isRunning = false; nextFrameTimer.Stop(); return; } Dispatcher.BeginInvoke((Action)(() => { currentFrame = n; try { var frame = frames[n]; var frame2 = frames[n + Step]; frame = Undistort(frame); frame2 = Undistort(frame2); var mat = frame.ToImage <Bgr, byte>(); var mat2 = frame2.ToImage <Bgr, byte>(); double maxDistance = MaxDistance(frame); Func <int, int, MatchingResult> matcher = (i1, i2) => { if (!features.TryGetValue(i1, out var features1)) { MatchImagePair.FindFeatures(frames[i1], Detector, Descriptor, out MKeyPoint[] kps1, out Mat desc1); features1 = new MatchingResult() { LeftKps = kps1, LeftDescriptors = desc1 }; } if (!features.TryGetValue(i2, out var features2)) { MatchImagePair.FindFeatures(frames[i2], Detector, Descriptor, out MKeyPoint[] kps2, out Mat desc2); features2 = new MatchingResult() { LeftKps = kps2, LeftDescriptors = desc2 }; } return(MatchImagePair.Match(features1.LeftKps, features1.LeftDescriptors, features2.LeftKps, features2.LeftDescriptors, DistanceType, maxDistance)); }; OdometerFrame odometerFrame = scaler.NextFrame(n, n + Step, matcher); // OdometerFrame odometerFrame = FindTransformation.GetOdometerFrame(mat.Mat, mat2.Mat, Detector, Descriptor, DistanceType, maxDistance, K); if (odometerFrame != null) { videoViewer.Source = ImageLoader.ImageSourceForBitmap(frame.Bitmap); recursive = true; frameProgression.Value = n; recursive = false; frameCurrentLabel.Content = n; totalRotation = odometerFrame.RotationMatrix.Multiply(totalRotation); var rotationEuler = RotationConverter.MatrixToEulerXYZ(totalRotation); totalTranslation = totalTranslation + odometerFrame.Translation; infoComputed.Text = FormatInfo(odometerFrame.Translation, odometerFrame.Rotation, "Comp Diff"); infoComputedCumulative.Text = FormatInfo(totalTranslation, rotationEuler, "Comp Cumulative"); infoK.Text = FormatInfoK(odometerFrame); MatchDrawer.DrawFeatures(mat.Mat, mat2.Mat, odometerFrame.Match, TakeBest, matchedView); } } catch (Exception e) { infoComputed.Text = "Error!"; } if (isRunning) { nextFrameTimer.Start(); } })); }
public static OdometerFrame GetOdometerFrame3( Mat left, Mat middle, Mat right, double lastScale, out double thisScale, Feature2D detector, Feature2D descriptor, DistanceType distanceType, double maxDistance, Image <Arthmetic, double> K, double takeBest = 1.0) { thisScale = lastScale; var match12 = MatchImagePair.Match(left, middle, detector, descriptor, distanceType, maxDistance); var match23 = MatchImagePair.Match(middle, right, detector, descriptor, distanceType, maxDistance); var match13 = MatchImagePair.Match(left, right, detector, descriptor, distanceType, maxDistance); var left1 = match12.LeftPoints; var right1 = match12.RightPoints; var left2 = match23.LeftPoints; var left2_X = MatchClosePoints.SortByX(match23.LeftPoints); var right2 = match23.RightPoints; var left3 = match13.LeftPoints; var right3 = match13.RightPoints; var right3_X = MatchClosePoints.SortByX(match13.LeftPoints); TripletMatch tmatch = new TripletMatch(); List <MDMatch> m12 = new List <MDMatch>(); List <MDMatch> m23 = new List <MDMatch>(); for (int idx12 = 0; idx12 < left1.Size; ++idx12) { var p1 = left1[idx12]; var p2 = right1[idx12]; int idx23 = IndexOf_X(left2_X, p2); if (idx23 != -1) { var p3 = right2[idx23]; int idx13 = IndexOf_X(right3_X, p1); if (idx13 != -1) { if (AreEqual(left1[idx12], left3[idx13], maxDistance)) { tmatch.Left.Add(p1); tmatch.Middle.Add(p2); tmatch.Right.Add(p3); m12.Add(match12.Matches[idx12]); m23.Add(match23.Matches[idx23]); } } } } match12.Matches = new VectorOfDMatch(m12.ToArray()); match23.Matches = new VectorOfDMatch(m23.ToArray()); var F12 = ComputeMatrix.F(new VectorOfPointF(tmatch.Left.ToArray()), new VectorOfPointF(tmatch.Middle.ToArray())); // var F23 = ComputeMatrix.F(new VectorOfPointF(tmatch.Middle.ToArray()), new VectorOfPointF(tmatch.Right.ToArray())); var F13 = ComputeMatrix.F(new VectorOfPointF(tmatch.Left.ToArray()), new VectorOfPointF(tmatch.Right.ToArray())); if (F12 == null || F13 == null) { return(null); } var Es = new List <Image <Arthmetic, double> > { ComputeMatrix.E(F12, K), // ComputeMatrix.E(F23, K), ComputeMatrix.E(F13, K) }; FindTransformation.DecomposeToRTAndTriangulate(tmatch.Left, tmatch.Middle, K, Es[0], out Image <Arthmetic, double> R12, out Image <Arthmetic, double> t12, out Image <Arthmetic, double> X12); // FindTransformation.DecomposeToRT(Es[1], out Image<Arthmetic, double> R23, out Image<Arthmetic, double> t23); FindTransformation.DecomposeToRTAndTriangulate(tmatch.Left, tmatch.Right, K, Es[1], out Image <Arthmetic, double> R13, out Image <Arthmetic, double> t13, out Image <Arthmetic, double> X13); var Rs = new List <Image <Arthmetic, double> > { R12, R13 }; var ts = new List <Image <Arthmetic, double> > { t12, t13 }; var cc = ComputeCameraCenter3(K, Rs, ts, tmatch); OdometerFrame odometerFrame = new OdometerFrame(); odometerFrame.Rotation = RotationConverter.MatrixToEulerXYZ(Rs[0]); odometerFrame.RotationMatrix = Rs[0]; odometerFrame.MatK = K; odometerFrame.Match = match12; // Image<Arthmetic, double> C = ComputeCameraCenter(R, t, K, match); // odometerFrame.Translation = R.Multiply(C); // odometerFrame.Translation = R.T().Multiply(odometerFrame.Translation); odometerFrame.Translation = ts[0].Mul(lastScale / ts[0].Norm); odometerFrame.Center = lastScale * cc.C12; thisScale = cc.Ratio3To2; return(odometerFrame); }
public OdometerFrame NextFrame(int left, int right, Func <int, int, MatchingResult> matcher) { MatchingResult match23 = matcher(left, right); if (match23.Matches.Size < MinimumCorrespondencesNeeded) { // Track of points is lost, at least temporarly. Let's put handling lost-track case ou of scope for now. lastGoodMatch = null; isContinuous = false; return(null); } OdometerFrame frame = new OdometerFrame() { MatK = K, Match = match23, Rotation = new Image <Arthmetic, double>(1, 3), RotationMatrix = RotationConverter.EulerXYZToMatrix(new Image <Arthmetic, double>(1, 3)), Translation = new Image <Arthmetic, double>(1, 3) }; // 1) Determine if transformation between next frames has high enough baseline to be accurate // 1a) For now lets determine it by finding if lone rotation is good enough var H = FindTransformation.EstimateHomography(match23.LeftPointsList, match23.RightPointsList, K); if (FindTransformation.IsPureRotation(H, RotationTreshold1, RotationTreshold2)) { // 1c) If not then transformation is described only by rotation // 1b) Find rotation and rotate all points in current set isContinuous = false; frame.Rotation = RotationConverter.MatrixToEulerXYZ(H); frame.RotationMatrix = RotationConverter.EulerXYZToMatrix(frame.Rotation); if (last3dPoints != null && R12 != null) { last3dPoints = Utils.PutRTo4x4(frame.RotationMatrix).Multiply(last3dPoints); R12 = frame.RotationMatrix.Multiply(R12); } else { R12 = frame.RotationMatrix; } // 1c) Skip frame and wait for next one (but save matches) return(frame); } // 2) We have legit frames if (!FindTransformation.FindTwoViewsMatrices(match23.LeftPointsList, match23.RightPointsList, K, out var F23, out var E23, out var R23, out var t23, out var X23)) { // 3a) Or not isContinuous = false; return(null); } frame.Rotation = RotationConverter.MatrixToEulerXYZ(R23); frame.RotationMatrix = R23; frame.Translation = t23; // 3) Find same points between old frame and current one if (lastGoodMatch == null) { last3dPoints = X23; isContinuous = true; } else { #region NonContinousCase //if (!isContinuous) // This doesn't work well. Lets put it out of scope and just reset scale // { // Find correspondences between last right and new left //var match12 = lastGoodMatch; //var match34 = match23; //var match23_ = matcher(lastGoodRightImage, left); // TODO: make use of already found feature points //var correspondences23to34 = Correspondences.FindCorrespondences12to23(match23_, match34); //// Now extend each correspondence to 4 points - find if point on 2 is matched to some point on 1 //var correspondences13to34 = new List<Correspondences.MatchPair>(); //foreach(var c in correspondences23to34) //{ // var m23 = c.Match12; // for (int i = 0; i < match12.Matches.Size; ++i) // { // if(match12.Matches[i].TrainIdx == m23.QueryIdx) // { // correspondences13to34.Add(new Correspondences.MatchPair() // { // Kp1 = match12.LeftKps[match12.Matches[i].QueryIdx], // Kp2 = c.Kp2, // Kp3 = c.Kp3 // }); // } // } //} //if (correspondences13to34.Count >= MinimumCorrespondencesNeeded) //{ // var t13 = R12.Multiply(c12).Mul(-1); // FindBestScale(R12, t13, R23, t23, K, correspondences13to34, MinimumCorrespondencesNeeded, out double scale, out double confidence, out List<int> inliers); // t23 = t23.Mul(scale); // frame.Translation = t23; // FindTransformation.TriangulateChieral(match23.LeftPointsList, match23.RightPointsList, K, R23, t23, out last3dPoints); // isContinuous = true; //} //else //{ // isContinuous = false; //} // } #endregion if (isContinuous) { var correspondences = Correspondences.FindCorrespondences12to23(lastGoodMatch, match23); if (correspondences.Count >= MinimumCorrespondencesNeeded) { // Normalize to |t| = 1 t12 = t12.Mul(1.0 / t12.Norm); t23 = t23.Mul(1.0 / t23.Norm); FindBestScale(R12, t12, R23, t23, K, correspondences, MinimumCorrespondencesNeeded, out double scale, out double confidence, out List <int> inliers); t23 = t23.Mul(scale); frame.Translation = t23; FindTransformation.TriangulateChieral(match23.LeftPointsList, match23.RightPointsList, K, R23, t23, out last3dPoints); } else { isContinuous = false; } } } lastGoodMatch = match23; lastGoodLeftImage = left; lastGoodRightImage = right; R12 = R23; t12 = t23; c12 = R23.T().Multiply(t23).Mul(-1); return(frame); }