/// <summary> /// 3D Perlin Noise Function /// </summary> public double Noise(double X, double Y, double Z) { X += OffsetX; Y += OffsetY; Z += OffsetZ; int XFloored = NoiseUtils.FastFloor(X); int YFloored = NoiseUtils.FastFloor(Y); int ZFloored = NoiseUtils.FastFloor(Z); int _XFloored = XFloored & 255; int _YFloored = YFloored & 255; int _ZFloored = ZFloored & 255; double FX = Fade(X); double FY = Fade(Y); double FZ = Fade(Z); int A = Permutations[_XFloored] + _YFloored; int AA = Permutations[A] + _ZFloored; int AB = Permutations[A + 1] + _ZFloored; int B = Permutations[_XFloored + 1] + _YFloored; int BA = Permutations[B] + _ZFloored; int BB = Permutations[B + 1] + _ZFloored; return(Lerp(FZ, Lerp(FY, Lerp(FX, Gradient(Permutations[AA], _XFloored, _YFloored, _ZFloored), Gradient(Permutations[BA], _XFloored - 1, _YFloored, _ZFloored)), Lerp(FY, Gradient(Permutations[AB], _XFloored, _YFloored - 1, _ZFloored), Gradient(Permutations[BB], _XFloored - 1, _YFloored - 1, _ZFloored))), Lerp(FY, Lerp(FX, Gradient(Permutations[AA + 1], _XFloored, _YFloored, _ZFloored - 1), Gradient(Permutations[BA + 1], _XFloored - 1, _YFloored, _ZFloored - 1)), Lerp(FY, Gradient(Permutations[AB + 1], _XFloored, _YFloored - 1, _ZFloored - 1), Gradient(Permutations[BB + 1], _XFloored - 1, _YFloored - 1, _ZFloored - 1))))); }
/// <summary> /// 3D Simplex Noise. /// </summary> public static float Noise(float xin, float yin, float zin) { xin += OffsetX; yin += OffsetY; zin += OffsetZ; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float F3 = 1.0f / 3.0f; float s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D int i = NoiseUtils.FastFloor(xin + s); int j = NoiseUtils.FastFloor(yin + s); int k = NoiseUtils.FastFloor(zin + s); float G3 = 1.0f / 6.0f; // Very nice and simple unskew factor, too float t = (i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = xin - X0; // The x,y,z distances from the cell origin float y0 = yin - Y0; float z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = Permutations[ii + Permutations[jj + Permutations[kk]]] % 12; int gi1 = Permutations[ii + i1 + Permutations[jj + j1 + Permutations[kk + k1]]] % 12; int gi2 = Permutations[ii + i2 + Permutations[jj + j2 + Permutations[kk + k2]]] % 12; int gi3 = Permutations[ii + 1 + Permutations[jj + 1 + Permutations[kk + 1]]] % 12; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * Dot(Grad3[gi0], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * Dot(Grad3[gi1], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0.0f; } else { t2 *= t2; n2 = t2 * t2 * Dot(Grad3[gi2], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0.0f; } else { t3 *= t3; n3 = t3 * t3 * Dot(Grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return(32.0f * (n0 + n1 + n2 + n3)); }
/// <summary> /// 2D Simplex Noise /// </summary> public static float Noise(float xin, float yin) { xin += OffsetX; yin += OffsetY; float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float F2 = (float)(0.5 * (Math.Sqrt(3.0) - 1.0)); float s = (xin + yin) * F2; // Hairy factor for 2D int i = NoiseUtils.FastFloor(xin + s); int j = NoiseUtils.FastFloor(yin + s); float g2 = (float)((3.0 - Math.Sqrt(3.0)) / 6.0); float t = (i + j) * g2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = xin - X0; // The x,y distances from the cell origin float y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + g2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + g2; float x2 = x0 - 1.0f + 2.0f * g2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * g2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = Permutations[ii + Permutations[jj]] % 12; int gi1 = Permutations[ii + i1 + Permutations[jj + j1]] % 12; int gi2 = Permutations[ii + 1 + Permutations[jj + 1]] % 12; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * Dot(Grad3[gi0], x0, y0); // (x,y) of Grad3 used for 2D gradient } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * Dot(Grad3[gi1], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0.0f; } else { t2 *= t2; n2 = t2 * t2 * Dot(Grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. float returnNoise = 70.0f * (n0 + n1 + n2); // make it range from 0 to 1; return((returnNoise + 1.0f) * 0.5f); }