Exemple #1
0
        /// <summary>
        /// Load grids from the specified folder
        /// </summary>
        /// <param name="strGridsFolder"></param>
        /// <param name="recursive"></param>
        public void InitializeExternalGrids(string strGridsFolder, bool recursive)
        {
            SearchOption opt = recursive ? SearchOption.AllDirectories : SearchOption.TopDirectoryOnly;

            string[]      gridTypes = new[] { "*.los", "*.gsb", "*.dat", "*.lla" };
            List <string> names     = new List <string>();

            foreach (string gridType in gridTypes)
            {
                string[] tmp = Directory.GetFiles(strGridsFolder, gridType, opt);
                names.AddRange(tmp);
            }

            foreach (string s in names)
            {
                string coreName = "@" + Path.GetFileNameWithoutExtension(s);
                if (_tables.ContainsKey(coreName))
                {
                    continue;
                }
                string ext = Path.GetExtension(s).ToLower();
                if (ext != ".los" && ext != ".gsb" && ext != ".dat")
                {
                    continue;
                }
                if (ext == ".los" && !File.Exists(s.Replace(".los", ".las")))
                {
                    continue;
                }
                NadTable nt = NadTable.FromSourceName(s, false);
                _tables.Add(coreName, nt);
            }
        }
Exemple #2
0
        /// <summary>
        /// Creates a new instance of NadTables
        /// </summary>
        public NadTables()
        {
            _tables = new Dictionary <string, NadTable>();
            Assembly a = Assembly.GetExecutingAssembly();

            string[] names = a.GetManifestResourceNames();

            foreach (string s in names)
            {
                string[] ss       = s.Split('.');
                string   coreName = "@" + ss[ss.Length - 2];
                if (_tables.ContainsKey(coreName))
                {
                    continue;
                }
                string ext = Path.GetExtension(s).ToLower();
                if (ext != ".lla" && ext != ".dat" && ext != ".gsb")
                {
                    continue;
                }
                Stream text = a.GetManifestResourceStream(s);
                if (text == null)
                {
                    continue;
                }
                NadTable nt = NadTable.FromSourceName(s);
                _tables.Add(coreName, nt);
            }
        }
Exemple #3
0
        /// <summary>
        /// This method parses the extension of a resource location or
        /// path and creates the new NadTable type.
        /// </summary>
        /// <param name="location"></param>
        /// <param name="embedded"></param>
        /// <returns></returns>
        public static NadTable FromSourceName(string location, bool embedded)
        {
            NadTable result = null;
            string   ext    = Path.GetExtension(location).ToLower();

            switch (ext)
            {
            case ".lla":
                result = new LlaNadTable(location, embedded);
                break;

            case ".gsb":
                result = new GsbNadTable(location, 0, embedded);
                break;

            case ".dat":
                result = new DatNadTable(location, embedded);
                break;

            case ".los":
                result = new LasLosNadTable(location, embedded);
                break;
            }
            if (result != null)
            {
                result.ReadHeader();
            }
            return(result);
        }
Exemple #4
0
        private static bool TryGrid(PhiLam input, NadTable table)
        {
            var wLam = table.LowerLeft.Lambda;
            var eLam = wLam + (table.NumLambdas - 1) * table.CellSize.Lambda;
            var sPhi = table.LowerLeft.Phi;
            var nPhi = sPhi + (table.NumPhis - 1) * table.CellSize.Lambda;

            if (input.Lambda < wLam || input.Lambda > eLam ||
                input.Phi < sPhi || input.Phi > nPhi)
            {
                return(false);
            }
            return(true);
        }
Exemple #5
0
 /// <summary>
 /// Checks the edges to make sure that we are not attempting to interpolate
 /// from cells that don't exist.
 /// </summary>
 /// <param name="iPhi">The cell index in the phi direction</param>
 /// <param name="iLam">The cell index in the lambda direction</param>
 /// <param name="table">The Table with the values</param>
 /// <returns>A PhiLam that has the shift coefficeints.</returns>
 private static PhiLam GetValue(int iPhi, int iLam, NadTable table)
 {
     if (iPhi < 0)
     {
         iPhi = 0;
     }
     if (iPhi >= table.NumPhis)
     {
         iPhi = table.NumPhis - 1;
     }
     if (iLam < 0)
     {
         iLam = 0;
     }
     if (iLam >= table.NumLambdas)
     {
         iLam = table.NumPhis - 1;
     }
     return(table.Cvs[iPhi][iLam]);
 }
Exemple #6
0
        private static PhiLam NadInterpolate(PhiLam t, NadTable ct)
        {
            PhiLam result, remainder;

            result.Phi    = HUGE_VAL;
            result.Lambda = HUGE_VAL;
            // find indices and normalize by the cell size (so fractions range from 0 to 1)

            int iLam = (int)Math.Floor(t.Lambda /= ct.CellSize.Lambda);
            int iPhi = (int)Math.Floor(t.Phi /= ct.CellSize.Phi);

            // use the index to determine the remainder

            remainder.Lambda = t.Lambda - iLam;
            remainder.Phi    = t.Phi - iPhi;

            //int offLam = 0; // normally we look to the right and bottom neighbor cells
            //int offPhi = 0;
            //if (remainder.Lambda < .5) offLam = -1; // look to cell left of the current cell
            //if (remainder.Phi < .5) offPhi = -1; // look to cell above the of the current cell

            //// because the fractional weights are between cells, we need to adjust the
            //// "remainder" so that it is now relative to the center of the top left
            //// cell, taking into account that the definition of the top left cell
            //// depends on whether the original remainder was larger than .5
            //remainder.Phi = (remainder.Phi > .5) ? remainder.Phi - .5 : remainder.Phi + .5;
            //remainder.Lambda = (remainder.Lambda > .5) ? remainder.Lambda - .5 : remainder.Phi + .5;

            if (iLam < 0)
            {
                if (iLam == -1 && remainder.Lambda > 0.99999999999)
                {
                    iLam++;
                    remainder.Lambda = 0;
                }
                else
                {
                    return(result);
                }
            }
            else if (iLam + 1 >= ct.NumLambdas)
            {
                if (iLam + 1 == ct.NumLambdas && remainder.Lambda < 1e-11)
                {
                    iLam--;
                }
                else
                {
                    return(result);
                }
            }
            if (iPhi < 0)
            {
                if (iPhi == -1 && remainder.Phi > 0.99999999999)
                {
                    iPhi++;
                    remainder.Phi = 0;
                }
                else
                {
                    return(result);
                }
            }
            else if (iPhi + 1 >= ct.NumPhis)
            {
                if (iPhi + 1 == ct.NumPhis && remainder.Phi < 1e-11)
                {
                    iPhi--;
                    remainder.Phi = 1;
                }
                else
                {
                    return(result);
                }
            }

            PhiLam f00 = GetValue(iPhi, iLam, ct);
            PhiLam f01 = GetValue(iPhi + 1, iLam, ct);
            PhiLam f10 = GetValue(iPhi, iLam + 1, ct);
            PhiLam f11 = GetValue(iPhi + 1, iLam + 1, ct);

            // The cell weight is equivalent to the area of a cell sized square centered
            // on the actual point that overlaps with the cell.

            // Since the overlap must add up to 1, any portion that does not overlap
            // on the left must overlap on the right, hence (1-remainder.Lambda)

            double m00 = (1 - remainder.Lambda) * (1 - remainder.Phi);
            double m01 = (1 - remainder.Lambda) * remainder.Phi;
            double m10 = remainder.Lambda * (1 - remainder.Phi);
            double m11 = remainder.Lambda * remainder.Phi;

            result.Lambda = m00 * f00.Lambda + m01 * f01.Lambda + m10 * f10.Lambda + m11 * f11.Lambda;
            result.Phi    = m00 * f00.Phi + m01 * f01.Phi + m10 * f10.Phi + m11 * f11.Phi;

            return(result);
        }
Exemple #7
0
        private static PhiLam Convert(PhiLam input, bool inverse, NadTable table)
        {
            if (input.Lambda == HUGE_VAL)
            {
                return(input);
            }
            // Normalize input to ll origin
            if (!table.Filled)
            {
                table.FillData();
            }
            PhiLam tb = input;

            tb.Lambda -= table.LowerLeft.Lambda;
            tb.Phi    -= table.LowerLeft.Phi;
            tb.Lambda  = Proj.Adjlon(tb.Lambda - Math.PI) + Math.PI;
            PhiLam t = NadInterpolate(tb, table);

            if (inverse)
            {
                PhiLam del, dif;
                int    i = MAX_TRY;
                if (t.Lambda == HUGE_VAL)
                {
                    return(t);
                }
                t.Lambda = tb.Lambda + t.Lambda;
                t.Phi    = tb.Phi - t.Phi;
                do
                {
                    del = NadInterpolate(t, table);

                    /* This case used to return failure, but I have
                     *     changed it to return the first order approximation
                     *     of the inverse shift.  This avoids cases where the
                     *     grid shift *into* this grid came from another grid.
                     *     While we aren't returning optimally correct results
                     *     I feel a close result in this case is better than
                     *     no result.  NFW
                     *     To demonstrate use -112.5839956 49.4914451 against
                     *     the NTv2 grid shift file from Canada. */
                    if (del.Lambda == HUGE_VAL)
                    {
                        Debug.WriteLine(ProjectionMessages.InverseShiftFailed);
                        break;
                    }
                    t.Lambda -= dif.Lambda = t.Lambda - del.Lambda - tb.Lambda;
                    t.Phi    -= dif.Phi = t.Phi + del.Phi - tb.Phi;
                } while (i-- > 0 && Math.Abs(dif.Lambda) > TOL && Math.Abs(dif.Phi) > TOL);
                if (i < 0)
                {
                    Debug.WriteLine(ProjectionMessages.InvShiftConvergeFailed);
                    t.Lambda = t.Phi = HUGE_VAL;
                    return(t);
                }
                input.Lambda = Proj.Adjlon(t.Lambda + table.LowerLeft.Lambda);
                input.Phi    = t.Phi + table.LowerLeft.Phi;
            }
            else
            {
                if (t.Lambda == HUGE_VAL)
                {
                    input = t;
                }
                else
                {
                    input.Lambda -= t.Lambda;
                    input.Phi    += t.Phi;
                }
            }
            return(input);
        }
Exemple #8
0
 /// <summary>
 /// Checks the edges to make sure that we are not attempting to interpolate
 /// from cells that don't exist.
 /// </summary>
 /// <param name="iPhi">The cell index in the phi direction</param>
 /// <param name="iLam">The cell index in the lambda direction</param>
 /// <param name="table">The Table with the values</param>
 /// <returns>A PhiLam that has the shift coefficeints.</returns>
 private static PhiLam GetValue(int iPhi, int iLam, NadTable table)
 {
     if (iPhi < 0) iPhi = 0;
     if (iPhi >= table.NumPhis) iPhi = table.NumPhis - 1;
     if (iLam < 0) iLam = 0;
     if (iLam >= table.NumLambdas) iLam = table.NumPhis - 1;
     return table.Cvs[iPhi][iLam];
 }
Exemple #9
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="t"></param>
        /// <param name="ct"></param>
        /// <returns></returns>
        private static PhiLam NadInterpolate(PhiLam t, NadTable ct)
        {
            PhiLam result, remainder;
            result.Phi = HUGE_VAL;
            result.Lambda = HUGE_VAL;
            // find indices and normalize by the cell size (so fractions range from 0 to 1)

            int iLam = (int)Math.Floor(t.Lambda /= ct.CellSize.Lambda);
            int iPhi = (int)Math.Floor(t.Phi /= ct.CellSize.Phi);

            // use the index to determine the remainder

            remainder.Lambda = t.Lambda - iLam;
            remainder.Phi = t.Phi - iPhi;

            //int offLam = 0; // normally we look to the right and bottom neighbor cells
            //int offPhi = 0;
            //if (remainder.Lambda < .5) offLam = -1; // look to cell left of the current cell
            //if (remainder.Phi < .5) offPhi = -1; // look to cell above the of the current cell

            //// because the fractional weights are between cells, we need to adjust the
            //// "remainder" so that it is now relative to the center of the top left
            //// cell, taking into account that the definition of the top left cell
            //// depends on whether the original remainder was larger than .5
            //remainder.Phi = (remainder.Phi > .5) ? remainder.Phi - .5 : remainder.Phi + .5;
            //remainder.Lambda = (remainder.Lambda > .5) ? remainder.Lambda - .5 : remainder.Phi + .5;

            if (iLam < 0)
            {
                if (iLam == -1 && remainder.Lambda > 0.99999999999)
                {
                    iLam++;
                    remainder.Lambda = 0;
                }
                else
                {
                    return result;
                }
            }
            else if (iLam + 1 >= ct.NumLambdas)
            {
                if (iLam + 1 == ct.NumLambdas && remainder.Lambda < 1e-11)
                {
                    iLam--;
                }
                else
                {
                    return result;
                }
            }
            if (iPhi < 0)
            {
                if (iPhi == -1 && remainder.Phi > 0.99999999999)
                {
                    iPhi++;
                    remainder.Phi = 0;
                }
                else
                {
                    return result;
                }
            }
            else if (iPhi + 1 >= ct.NumPhis)
            {
                if (iPhi + 1 == ct.NumPhis && remainder.Phi < 1e-11)
                {
                    iPhi--;
                    remainder.Phi = 1;
                }
                else
                {
                    return result;
                }
            }

            PhiLam f00 = GetValue(iPhi, iLam, ct);
            PhiLam f01 = GetValue(iPhi + 1, iLam, ct);
            PhiLam f10 = GetValue(iPhi, iLam + 1, ct);
            PhiLam f11 = GetValue(iPhi + 1, iLam + 1, ct);

            // The cell weight is equivalent to the area of a cell sized square centered
            // on the actual point that overlaps with the cell.

            // Since the overlap must add up to 1, any portion that does not overlap
            // on the left must overlap on the right, hence (1-remainder.Lambda)

            double m00 = (1 - remainder.Lambda) * (1 - remainder.Phi);
            double m01 = (1 - remainder.Lambda) * remainder.Phi;
            double m10 = remainder.Lambda * (1 - remainder.Phi);
            double m11 = remainder.Lambda * remainder.Phi;

            result.Lambda = m00 * f00.Lambda + m01 * f01.Lambda + m10 * f10.Lambda + m11 * f11.Lambda;
            result.Phi = m00 * f00.Phi + m01 * f01.Phi + m10 * f10.Phi + m11 * f11.Phi;

            return result;
        }
Exemple #10
0
 private static PhiLam Convert(PhiLam input, bool inverse, NadTable table)
 {
     if (input.Lambda == HUGE_VAL) return input;
     // Normalize input to ll origin
     if (!table.Filled) table.FillData();
     PhiLam tb = input;
     tb.Lambda -= table.LowerLeft.Lambda;
     tb.Phi -= table.LowerLeft.Phi;
     tb.Lambda = Proj.Adjlon(tb.Lambda - Math.PI) + Math.PI;
     PhiLam t = NadInterpolate(tb, table);
     if (inverse)
     {
         PhiLam del, dif;
         int i = MAX_TRY;
         if (t.Lambda == HUGE_VAL) return t;
         t.Lambda = tb.Lambda + t.Lambda;
         t.Phi = tb.Phi - t.Phi;
         do
         {
             del = NadInterpolate(t, table);
             /* This case used to return failure, but I have
                    changed it to return the first order approximation
                    of the inverse shift.  This avoids cases where the
                    grid shift *into* this grid came from another grid.
                    While we aren't returning optimally correct results
                    I feel a close result in this case is better than
                    no result.  NFW
                    To demonstrate use -112.5839956 49.4914451 against
                    the NTv2 grid shift file from Canada. */
             if (del.Lambda == HUGE_VAL)
             {
                 Debug.WriteLine(ProjectionMessages.InverseShiftFailed);
                 break;
             }
             t.Lambda -= dif.Lambda = t.Lambda - del.Lambda - tb.Lambda;
             t.Phi -= dif.Phi = t.Phi + del.Phi - tb.Phi;
         } while (i-- > 0 && Math.Abs(dif.Lambda) > TOL && Math.Abs(dif.Phi) > TOL);
         if (i < 0)
         {
             Debug.WriteLine(ProjectionMessages.InvShiftConvergeFailed);
             t.Lambda = t.Phi = HUGE_VAL;
             return t;
         }
         input.Lambda = Proj.Adjlon(t.Lambda + table.LowerLeft.Lambda);
         input.Phi = t.Phi + table.LowerLeft.Phi;
     }
     else
     {
         if (t.Lambda == HUGE_VAL)
         {
             input = t;
         }
         else
         {
             input.Lambda -= t.Lambda;
             input.Phi += t.Phi;
         }
     }
     return input;
 }
Exemple #11
0
        /// <summary>
        /// Applies either a forward or backward gridshift based on the specified name
        /// </summary>
        /// <param name="names"></param>
        /// <param name="inverse"></param>
        /// <param name="xy"></param>
        /// <param name="startIndex"></param>
        /// <param name="numPoints"></param>
        public static void Apply(string[] names, bool inverse, double[] xy, int startIndex, long numPoints)
        {
            for (int i = startIndex; i < numPoints; i++)
            {
                PhiLam input, output;
                input.Phi     = xy[i * 2 + 1];
                input.Lambda  = xy[i * 2];
                output.Phi    = HUGE_VAL;
                output.Lambda = HUGE_VAL;

                /* keep trying till we find a Table that works from the ones listed */
                foreach (string name in names)
                {
                    if (!_shift.Tables.ContainsKey(name))
                    {
                        continue;
                    }
                    NadTable table = _shift.Tables[name];
                    bool     found = false;
                    // For GSB tables, we need to check for the appropriate sub-table
                    if (table.SubGrids != null && table.SubGrids.Count > 1)
                    {
                        foreach (NadTable subGrid in table.SubGrids)
                        {
                            /* skip tables that don't match our point at all.  */
                            double wLam = subGrid.LowerLeft.Lambda;
                            double eLam = wLam + (subGrid.NumLambdas - 1) * subGrid.CellSize.Lambda;
                            double sPhi = subGrid.LowerLeft.Phi;
                            double nPhi = sPhi + (subGrid.NumPhis - 1) * subGrid.CellSize.Lambda;
                            if (input.Lambda < wLam || input.Lambda > eLam ||
                                input.Phi < sPhi || input.Phi > nPhi)
                            {
                                continue;
                            }
                            table = subGrid;
                            found = true;
                            break;
                        }
                        if (!found)
                        {
                            continue;
                        }
                    }
                    else
                    {
                        /* skip tables that don't match our point at all.  */
                        double minLam = table.LowerLeft.Lambda;
                        double maxLam = minLam + (table.NumLambdas - 1) * table.CellSize.Lambda;
                        double minPhi = table.LowerLeft.Phi;
                        double maxPhi = minPhi + (table.NumPhis - 1) * table.CellSize.Lambda;
                        if (input.Lambda < minLam || input.Lambda > maxLam ||
                            input.Phi < minPhi || input.Phi > maxPhi)
                        {
                            continue;
                        }
                    }

                    // TO DO: handle child nodes?  Not sure what format would require this
                    output = Convert(input, inverse, table);
                    if (output.Lambda == HUGE_VAL)
                    {
                        Debug.WriteLine("GridShift failed");
                        break;
                    }
                    break;
                }

                if (output.Lambda == HUGE_VAL)
                {
                    Debug.WriteLine(
                        "pj_apply_gridshift(): failed to find a grid shift Table for location: ("
                        + xy[i * 2] * 180 / Math.PI + ", " + xy[i * 2 + 1] * 180 / Math.PI + ")");
                }
                else
                {
                    xy[i * 2]     = output.Lambda;
                    xy[i * 2 + 1] = output.Phi;
                }
            }
        }