Exemple #1
0
        public static void GetIndexOfFirstNonAsciiByte_Boundaries()
        {
            // The purpose of this test is to make sure we're hitting all of the vectorized
            // and draining logic correctly both in the SSE2 and in the non-SSE2 enlightened
            // code paths. We shouldn't be reading beyond the boundaries we were given.

            // The 5 * Vector test should make sure that we're exercising all possible
            // code paths across both implementations.
            using (BoundedMemory <byte> mem = BoundedMemory.Allocate <byte>(5 * Vector <byte> .Count))
            {
                Span <byte> bytes = mem.Span;

                // First, try it with all-ASCII buffers.

                for (int i = 0; i < bytes.Length; i++)
                {
                    bytes[i] &= 0x7F; // make sure each byte (of the pre-populated random data) is ASCII
                }

                for (int i = bytes.Length; i >= 0; i--)
                {
                    Assert.Equal(i, CallGetIndexOfFirstNonAsciiByte(bytes.Slice(0, i)));
                }

                // Then, try it with non-ASCII bytes.

                for (int i = bytes.Length; i >= 1; i--)
                {
                    bytes[i - 1] = 0x80; // set non-ASCII
                    Assert.Equal(i - 1, CallGetIndexOfFirstNonAsciiByte(bytes.Slice(0, i)));
                }
            }
        }
Exemple #2
0
        public static void GetIndexOfFirstNonAsciiChar_Vector128InnerLoop()
        {
            // The purpose of this test is to make sure we're identifying the correct
            // vector (of the two that we're reading simultaneously) when performing
            // the final ASCII drain at the end of the method once we've broken out
            // of the inner loop.
            //
            // Use U+0123 instead of U+0080 for this test because if our implementation
            // uses pminuw / pmovmskb incorrectly, U+0123 will incorrectly show up as ASCII,
            // causing our test to produce a false negative.

            using (BoundedMemory <char> mem = BoundedMemory.Allocate <char>(1024))
            {
                Span <char> chars = mem.Span;

                for (int i = 0; i < chars.Length; i++)
                {
                    chars[i] &= '\u007F'; // make sure each char (of the pre-populated random data) is ASCII
                }

                // Two vectors have offsets 0 .. 31. We'll go backward to avoid having to
                // re-clear the vector every time.

                for (int i = 2 * SizeOfVector128 - 1; i >= 0; i--)
                {
                    chars[100 + i * 13] = '\u0123'; // 13 is relatively prime to 32, so it ensures all possible positions are hit
                    Assert.Equal(100 + i * 13, CallGetIndexOfFirstNonAsciiChar(chars));
                }
            }
        }
Exemple #3
0
        public static void GetIndexOfFirstNonAsciiByte_Vector128InnerLoop()
        {
            // The purpose of this test is to make sure we're identifying the correct
            // vector (of the two that we're reading simultaneously) when performing
            // the final ASCII drain at the end of the method once we've broken out
            // of the inner loop.

            using (BoundedMemory <byte> mem = BoundedMemory.Allocate <byte>(1024))
            {
                Span <byte> bytes = mem.Span;

                for (int i = 0; i < bytes.Length; i++)
                {
                    bytes[i] &= 0x7F; // make sure each byte (of the pre-populated random data) is ASCII
                }

                // Two vectors have offsets 0 .. 31. We'll go backward to avoid having to
                // re-clear the vector every time.

                for (int i = 2 * SizeOfVector128 - 1; i >= 0; i--)
                {
                    bytes[100 + i * 13] = 0x80; // 13 is relatively prime to 32, so it ensures all possible positions are hit
                    Assert.Equal(100 + i * 13, CallGetIndexOfFirstNonAsciiByte(bytes));
                }
            }
        }
Exemple #4
0
        public static void NarrowUtf16ToAscii_SomeNonAsciiInput()
        {
            using BoundedMemory <char> utf16Mem = BoundedMemory.Allocate <char>(128);
            using BoundedMemory <byte> asciiMem = BoundedMemory.Allocate <byte>(128);

            // Fill source with 00 .. 7F.

            Span <char> utf16Span = utf16Mem.Span;

            for (int i = 0; i < utf16Span.Length; i++)
            {
                utf16Span[i] = (char)i;
            }

            // We'll write to the ASCII span.

            Span <byte> asciiSpan = asciiMem.Span;

            for (int i = utf16Span.Length - 1; i >= 0; i--)
            {
                RandomNumberGenerator.Fill(asciiSpan); // fill with garbage

                // First, keep track of the garbage we wrote to the destination.
                // We want to ensure it wasn't overwritten.

                byte[] expectedTrailingData = asciiSpan.Slice(i).ToArray();

                // Then, set the desired byte as non-ASCII, then check that the workhorse
                // correctly saw the data as non-ASCII.

                utf16Span[i] = '\u0123'; // use U+0123 instead of U+0080 since it catches inappropriate pmovmskb usage
                Assert.Equal(i, CallNarrowUtf16ToAscii(utf16Span, asciiSpan));

                // Next, validate that the ASCII data was transcoded properly.

                for (int j = 0; j < i; j++)
                {
                    Assert.Equal((ushort)utf16Span[j], (ushort)asciiSpan[j]);
                }

                // Finally, validate that the trailing data wasn't overwritten with non-ASCII data.

                Assert.Equal(expectedTrailingData, asciiSpan.Slice(i).ToArray());
            }
        }
Exemple #5
0
        public static void WidenAsciiToUtf16_SomeNonAsciiInput()
        {
            using BoundedMemory <byte> asciiMem = BoundedMemory.Allocate <byte>(128);
            using BoundedMemory <char> utf16Mem = BoundedMemory.Allocate <char>(128);

            // Fill source with 00 .. 7F, then trap future writes.

            Span <byte> asciiSpan = asciiMem.Span;

            for (int i = 0; i < asciiSpan.Length; i++)
            {
                asciiSpan[i] = (byte)i;
            }

            // We'll write to the UTF-16 span.

            Span <char> utf16Span = utf16Mem.Span;

            for (int i = asciiSpan.Length - 1; i >= 0; i--)
            {
                RandomNumberGenerator.Fill(MemoryMarshal.Cast <char, byte>(utf16Span)); // fill with garbage

                // First, keep track of the garbage we wrote to the destination.
                // We want to ensure it wasn't overwritten.

                char[] expectedTrailingData = utf16Span.Slice(i).ToArray();

                // Then, set the desired byte as non-ASCII, then check that the workhorse
                // correctly saw the data as non-ASCII.

                asciiSpan[i] |= (byte)0x80;
                Assert.Equal(i, CallWidenAsciiToUtf16(asciiSpan, utf16Span));

                // Next, validate that the ASCII data was transcoded properly.

                for (int j = 0; j < i; j++)
                {
                    Assert.Equal((ushort)asciiSpan[j], (ushort)utf16Span[j]);
                }

                // Finally, validate that the trailing data wasn't overwritten with non-ASCII data.

                Assert.Equal(expectedTrailingData, utf16Span.Slice(i).ToArray());
            }
        }
        private static unsafe void GetIndexOfFirstInvalidUtf8Sequence_Test_Core(byte[] input, int expectedRetVal, int expectedRuneCount, int expectedSurrogatePairCount)
        {
            // Arrange

            using BoundedMemory <byte> boundedMemory = BoundedMemory.AllocateFromExistingData(input);
            boundedMemory.MakeReadonly();

            // Act

            int actualRetVal;
            int actualSurrogatePairCount;
            int actualRuneCount;

            fixed(byte *pInputBuffer = &MemoryMarshal.GetReference(boundedMemory.Span))
            {
                byte *pFirstInvalidByte = Utf8Utility.GetPointerToFirstInvalidByte(pInputBuffer, input.Length, out int utf16CodeUnitCountAdjustment, out int scalarCountAdjustment);

                long ptrDiff = pFirstInvalidByte - pInputBuffer;

                Assert.True((ulong)ptrDiff <= (uint)input.Length, "ptrDiff was outside expected range.");

                Assert.True(utf16CodeUnitCountAdjustment <= 0, "UTF-16 code unit count adjustment must be 0 or negative.");
                Assert.True(scalarCountAdjustment <= 0, "Scalar count adjustment must be 0 or negative.");

                actualRetVal = (ptrDiff == input.Length) ? -1 : (int)ptrDiff;

                // The last two 'out' parameters are:
                // a) The number to be added to the "bytes processed" return value to come up with the total UTF-16 code unit count, and
                // b) The number to be added to the "total UTF-16 code unit count" value to come up with the total scalar count.

                int totalUtf16CodeUnitCount = (int)ptrDiff + utf16CodeUnitCountAdjustment;

                actualRuneCount = totalUtf16CodeUnitCount + scalarCountAdjustment;

                // Surrogate pair count is number of UTF-16 code units less the number of scalars.

                actualSurrogatePairCount = totalUtf16CodeUnitCount - actualRuneCount;
            }

            // Assert

            Assert.Equal(expectedRetVal, actualRetVal);
            Assert.Equal(expectedRuneCount, actualRuneCount);
            Assert.Equal(expectedSurrogatePairCount, actualSurrogatePairCount);
        }
Exemple #7
0
        public static void GetIndexOfFirstNonAsciiChar_Boundaries()
        {
            // The purpose of this test is to make sure we're hitting all of the vectorized
            // and draining logic correctly both in the SSE2 and in the non-SSE2 enlightened
            // code paths. We shouldn't be reading beyond the boundaries we were given.
            //
            // The 5 * Vector test should make sure that we're exercising all possible
            // code paths across both implementations. The sizeof(char) is because we're
            // specifying element count, but underlying implementation reintepret casts to bytes.
            //
            // Use U+0123 instead of U+0080 for this test because if our implementation
            // uses pminuw / pmovmskb incorrectly, U+0123 will incorrectly show up as ASCII,
            // causing our test to produce a false negative.

            using (BoundedMemory <char> mem = BoundedMemory.Allocate <char>(5 * Vector <byte> .Count / sizeof(char)))
            {
                Span <char> chars = mem.Span;

                for (int i = 0; i < chars.Length; i++)
                {
                    chars[i] &= '\u007F'; // make sure each char (of the pre-populated random data) is ASCII
                }

                for (int i = chars.Length; i >= 0; i--)
                {
                    Assert.Equal(i, CallGetIndexOfFirstNonAsciiChar(chars.Slice(0, i)));
                }

                // Then, try it with non-ASCII bytes.

                for (int i = chars.Length; i >= 1; i--)
                {
                    chars[i - 1] = '\u0123'; // set non-ASCII
                    Assert.Equal(i - 1, CallGetIndexOfFirstNonAsciiChar(chars.Slice(0, i)));
                }
            }
        }
Exemple #8
0
        public static void NarrowUtf16ToAscii_AllAsciiInput()
        {
            using BoundedMemory <char> utf16Mem = BoundedMemory.Allocate <char>(128);
            using BoundedMemory <byte> asciiMem = BoundedMemory.Allocate <byte>(128);

            // Fill source with 00 .. 7F.

            Span <char> utf16Span = utf16Mem.Span;

            for (int i = 0; i < utf16Span.Length; i++)
            {
                utf16Span[i] = (char)i;
            }
            utf16Mem.MakeReadonly();

            // We'll write to the ASCII span.
            // We test with a variety of span lengths to test alignment and fallthrough code paths.

            Span <byte> asciiSpan = asciiMem.Span;

            for (int i = 0; i < utf16Span.Length; i++)
            {
                asciiSpan.Clear(); // remove any data from previous iteration

                // First, validate that the workhorse saw the incoming data as all-ASCII.

                Assert.Equal(128 - i, CallNarrowUtf16ToAscii(utf16Span.Slice(i), asciiSpan.Slice(i)));

                // Then, validate that the data was transcoded properly.

                for (int j = i; j < 128; j++)
                {
                    Assert.Equal((ushort)utf16Span[i], (ushort)asciiSpan[i]);
                }
            }
        }