Exemple #1
0
        public static void LoadGUIDs(tMetaData *pThis, void *pStream, uint streamLen)
        {
            pThis->GUIDs.numGUIDs = streamLen / 16;

            // This is stored -16 because numbering starts from 1. This means that a simple indexing calculation
            // can be used, as if it started from 0
            pThis->GUIDs.pGUID1 = (byte *)pStream;

            Sys.log_f(1, "Read %d GUIDs\n", pThis->GUIDs.numGUIDs);
        }
Exemple #2
0
        public static tCLIFile *LoadAssembly(/*char**/ byte *pFileName)
        {
            byte[]        rawData;
            tCLIFile *    pRet;
            tFilesLoaded *pNewFile;
            byte *        filepath      = stackalloc byte[512];
            tMD_Assembly *pThisAssembly = null;

            rawData = null;
            for (int i = 0; i < assemblySearchPathsCount; i++)
            {
                S.snprintf(filepath, 512, "%s/%s", (PTR)assemblySearchPaths[i], (PTR)pFileName);
                rawData = LoadFileFromDisk(filepath);
                if (rawData != null)
                {
                    break;
                }
            }
            if (rawData == null)
            {
                Sys.Crash("Unable to load assembly file %s", (PTR)pFileName);
            }

            Sys.log_f(1, "\nLoading file: %s\n", (PTR)pFileName);

            pRet = LoadPEFile(rawData);

            // Get the assembly info - there is only ever one of these in the each file's metadata
            pThisAssembly = (tMD_Assembly *)MetaData.GetTableRow(pRet->pMetaData, MetaData.MAKE_TABLE_INDEX(0x20, 1));
            int nameLen = S.strlen(pThisAssembly->name) + 1;

            pRet->assemblyName = (byte *)Mem.mallocForever((uint)nameLen);
            S.strncpy(pRet->assemblyName, pThisAssembly->name, nameLen);

            // Record that we've loaded this file
            pNewFile           = ((tFilesLoaded *)Mem.mallocForever((SIZE_T)sizeof(tFilesLoaded)));
            pNewFile->pCLIFile = pRet;
            pNewFile->pNext    = pFilesLoaded;
            pFilesLoaded       = pNewFile;

            return(pRet);
        }
Exemple #3
0
        public static void Fill_TypeDef(tMD_TypeDef *pTypeDef, tMD_TypeDef **ppClassTypeArgs,
                                        tMD_TypeDef **ppMethodTypeArgs, uint resolve = Type.TYPE_FILL_ALL)
        {
            uint         instanceMemSize, staticMemSize, virtualOfs, isDeferred, i, j;
            int          lastPeriod;
            tMetaData *  pMetaData;
            tMD_TypeDef *pParent;

            System.Type    monoType;
            tMD_FieldDef * pFieldDefs;
            tMD_MethodDef *pMethodDefs;

            FieldInfo[] fieldInfos = null;
            FieldInfo   fieldInfo;

            MethodInfo[]      methodInfos      = null;
            ConstructorInfo[] constructorInfos = null;
            MethodBase        methodBase;
            tMD_MethodDef *   pMethodDef;

            if (pTypeDef->fillState >= resolve)
            {
                return;
            }

            if (pTypeDef->monoType == null)
            {
                MetaData.Fill_TypeDef(pTypeDef, ppClassTypeArgs, ppMethodTypeArgs, resolve);
                return;
            }

            //Sys.printf("FILLING TYPE: %s\n", (PTR)pTypeDef->name);

            if (MetaData.typesToFill == null)
            {
                MetaData.Fill_StartDefer();
                isDeferred = 1;
            }
            else
            {
                isDeferred = 0;
            }

            if (resolve < Type.TYPE_FILL_ALL)
            {
                MetaData.Fill_Defer(pTypeDef, ppClassTypeArgs, ppMethodTypeArgs);
            }

            MetaData.Fill_GetDeferredTypeArgs(pTypeDef, ref ppClassTypeArgs, ref ppMethodTypeArgs);

            monoType  = H.ToObj(pTypeDef->monoType) as System.Type;
            pMetaData = pTypeDef->pMetaData;

            if (pTypeDef->fillState < Type.TYPE_FILL_PARENTS)
            {
                pTypeDef->fillState = Type.TYPE_FILL_PARENTS;

                // For Methods, we get only public if sealed, or public/protected if not sealed
                methodInfos = GetMethods(monoType);
                // For fields, we only get private fields for value types
                fieldInfos = GetFields(monoType);
                // For constructors, we get only public if sealed, or public/protected if not sealed
                constructorInfos = GetConstructors(monoType);

                pTypeDef->pTypeDef = pTypeDef;

                pTypeDef->pParent = MonoType.GetTypeForMonoType(monoType.BaseType, null, null);
                pParent           = pTypeDef->pParent;

                pTypeDef->isValueType = (byte)(monoType.IsValueType ? 1 : 0);

                if (pParent != null)
                {
                    MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_PARENTS);
                    if (pParent->hasMonoBase == 0)
                    {
                        // If we have a mono base type, we have at least 1 non-blittable field
                        pTypeDef->blittable      = pParent->blittable;
                        pTypeDef->fixedBlittable = pParent->fixedBlittable;
                    }
                    else
                    {
                        pTypeDef->blittable = pTypeDef->fixedBlittable = 0;
                    }
                }
                else
                {
                    // For mono types - reference types are NEVER blittable in our implementation
                    pTypeDef->blittable = pTypeDef->fixedBlittable = pTypeDef->isValueType;
                }

                pTypeDef->alignment = 1;

                // Mark all ref types as having a base Mono Handle pointer as the first slot in their instance data.  This allows
                // the Heap system to call FREE on this Handle whenever we garbage collect mono wrapped or derived heap objects.
                pTypeDef->hasMonoBase = (byte)(monoType.IsValueType ? 0 : 1);

                // If not primed, then work out how many methods & fields there are.
                if (pTypeDef->isPrimed == 0)
                {
                    // Methods
                    pTypeDef->numMethods = (uint)(constructorInfos.Length + methodInfos.Length);
                    // Fields
                    pTypeDef->numFields = (uint)fieldInfos.Length;
                }

                // If this is an enum type, then pretend its stack type is its underlying type
                if (pTypeDef->pParent == Type.types[Type.TYPE_SYSTEM_ENUM])
                {
                    pTypeDef->stackType        = EvalStack.EVALSTACK_INT32;
                    pTypeDef->stackSize        = sizeof(PTR);
                    pTypeDef->instanceMemSize  = 4;
                    pTypeDef->arrayElementSize = 4;
                    pTypeDef->blittable        = pTypeDef->fixedBlittable = 1;
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }
            else
            {
                pParent = pTypeDef->pParent;
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_LAYOUT)
            {
                pTypeDef->fillState = Type.TYPE_FILL_LAYOUT;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_LAYOUT)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_LAYOUT);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                // This only needs to be done for non-generic Type.types, or for generic type that are not a definition
                // I.e. Fully instantiated generic Type.types
                if (pTypeDef->isGenericDefinition == 0)
                {
                    // For fields, we only get private fields for value types
                    if (fieldInfos == null)
                    {
                        fieldInfos = GetFields(monoType);
                    }

                    // Resolve fields, members, interfaces.
                    // Only needs to be done if it's not a generic definition type

                    // It it's not a value-type and the stack-size is not preset, then set it up now.
                    // It needs to be done here as non-static fields in non-value type can point to the containing type
                    if (pTypeDef->stackSize == 0 && pTypeDef->isValueType == 0)
                    {
                        pTypeDef->stackType = EvalStack.EVALSTACK_O;
                        pTypeDef->stackSize = sizeof(PTR);
                        pTypeDef->alignment = sizeof(PTR);
                    }
                    // Resolve all fields - instance ONLY at this point,
                    // because static fields in value-Type.types can be of the containing type, and the size is not yet known.
                    staticMemSize = 0;
                    if (pTypeDef->numFields > 0)
                    {
                        pTypeDef->ppFields = (tMD_FieldDef **)Mem.mallocForever((SIZE_T)(pTypeDef->numFields * sizeof(tMD_FieldDef *)));
                        pFieldDefs         = (tMD_FieldDef *)Mem.mallocForever((SIZE_T)(pTypeDef->numFields * sizeof(tMD_FieldDef)));
                        Mem.memset(pFieldDefs, 0, (SIZE_T)(pTypeDef->numFields * sizeof(tMD_FieldDef)));
                    }
                    else
                    {
                        pFieldDefs = null;
                    }
                    instanceMemSize = 0;
                    for (i = 0; i < fieldInfos.Length; i++)
                    {
                        fieldInfo = fieldInfos[i];
                        tMD_FieldDef *pFieldDef = &pFieldDefs[i];

                        pFieldDef->name  = new S(fieldInfo.Name);
                        pFieldDef->flags = (ushort)(
                            (fieldInfo.IsStatic ? MetaData.FIELDATTRIBUTES_STATIC : 0) |
                            (fieldInfo.IsLiteral ? MetaData.FIELDATTRIBUTES_LITERAL : 0)
                            );

                        if (!fieldInfo.IsStatic)
                        {
                            if (fieldInfo.IsLiteral /*|| MetaData.FIELD_HASFIELDRVA(pFieldDef)*/)
                            {
                                // If it's a literal, then analyse the field, but don't include it in any memory allocation
                                // If is has an RVA, then analyse the field, but don't include it in any memory allocation
                                MonoType.Fill_FieldDef(pTypeDef, fieldInfo, pFieldDef, 0, null, ppClassTypeArgs);
                            }
                            else
                            {
                                MonoType.Fill_FieldDef(pTypeDef, fieldInfo, pFieldDef, instanceMemSize, &(pTypeDef->alignment), ppClassTypeArgs);
                                instanceMemSize = pFieldDef->memOffset + pFieldDef->memSize;
                            }
                            // Update blittable and fixedBlittable status for type - if any non-blittable fields are included set to 0
                            if (pTypeDef->blittable != 0 || pTypeDef->fixedBlittable != 0)
                            {
                                if (pFieldDef->pType->isValueType == 0 || pFieldDef->pType->blittable == 0)
                                {
                                    pTypeDef->blittable = pTypeDef->fixedBlittable = 0;
                                }
                                else if (pFieldDef->pType->typeInitId == Type.TYPE_SYSTEM_INTPTR ||
                                         pFieldDef->pType->typeInitId == Type.TYPE_SYSTEM_UINTPTR)
                                {
                                    pTypeDef->fixedBlittable = 0;
                                }
                            }
                            pTypeDef->ppFields[i] = pFieldDef;
                        }
                    }
                    if (pTypeDef->instanceMemSize == 0)
                    {
                        if (pTypeDef->isValueType != 0)
                        {
                            // Our dna value types are the same size as they are in mono (hopefully!)
                            pTypeDef->instanceMemSize = (instanceMemSize + (pTypeDef->alignment - 1)) & ~(pTypeDef->alignment - 1);
                        }
                        else
                        {
                            // For mono reference types, the instance size is ALWAYS ptr size because we're wrapping a mono GCHandle pointer
                            pTypeDef->instanceMemSize = sizeof(PTR);
                        }
                    }

                    // Sort out stack type and size.
                    // Note that this may already be set, as some basic type have this preset;
                    // or if it's not a value-type it'll already be set
                    if (pTypeDef->stackSize == 0)
                    {
                        // if it gets here then it must be a value type
                        pTypeDef->stackType = EvalStack.EVALSTACK_VALUETYPE;
                        pTypeDef->stackSize = pTypeDef->instanceMemSize;
                    }

                    // Sort out array element size. Note that some basic type will have this preset.
                    if (pTypeDef->arrayElementSize == 0)
                    {
                        pTypeDef->arrayElementSize = pTypeDef->stackSize;
                    }

                    // Make sure stack size is even multiple of stack alignment
                    pTypeDef->stackSize = (pTypeDef->stackSize + (STACK_ALIGNMENT - 1)) & ~(STACK_ALIGNMENT - 1);

                    // Handle static fields
                    for (i = 0; i < fieldInfos.Length; i++)
                    {
                        fieldInfo = fieldInfos[i];
                        tMD_FieldDef *pFieldDef = &pFieldDefs[i];

                        if (fieldInfo.IsStatic)
                        {
                            if (fieldInfo.IsLiteral /*|| MetaData.FIELD_HASFIELDRVA(pFieldDef)*/)
                            {
                                // If it's a literal, then analyse the field, but don't include it in any memory allocation
                                // If is has an RVA, then analyse the field, but don't include it in any memory allocation
                                MonoType.Fill_FieldDef(pTypeDef, fieldInfo, pFieldDef, 0, null, ppClassTypeArgs);
                            }
                            else
                            {
                                MonoType.Fill_FieldDef(pTypeDef, fieldInfo, pFieldDef, staticMemSize, null, ppClassTypeArgs);
                                staticMemSize += pFieldDef->memSize;
                            }
                            pTypeDef->ppFields[i] = pFieldDef;
                        }
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_VTABLE)
            {
                pTypeDef->fillState = Type.TYPE_FILL_VTABLE;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_VTABLE)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_VTABLE);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                // This only needs to be done for non-generic Type.types, or for generic type that are not a definition
                // I.e. Fully instantiated generic Type.types
                if (pTypeDef->isGenericDefinition == 0)
                {
                    virtualOfs = (pParent != null) ? pParent->numVirtualMethods : 0;

                    // For Methods, we get only public if sealed, or public/protected if not sealed
                    if (methodInfos == null)
                    {
                        methodInfos = GetMethods(monoType);
                    }
                    // For constructors, we get only public if sealed, or public/protected if not sealed
                    if (constructorInfos == null)
                    {
                        constructorInfos = GetConstructors(monoType);
                    }

                    // Populate methods
                    pTypeDef->ppMethods = (tMD_MethodDef **)Mem.mallocForever((SIZE_T)(pTypeDef->numMethods * sizeof(tMD_MethodDef *)));
                    pMethodDefs         = (tMD_MethodDef *)Mem.mallocForever((SIZE_T)(pTypeDef->numMethods * sizeof(tMD_MethodDef)));
                    Mem.memset(pMethodDefs, 0, (SIZE_T)(pTypeDef->numMethods * sizeof(tMD_MethodDef)));
                    for (i = 0; i < pTypeDef->numMethods; i++)
                    {
                        methodBase = (i < constructorInfos.Length) ?
                                     (MethodBase)constructorInfos[i] : methodInfos[i - constructorInfos.Length];
                        pMethodDef = &pMethodDefs[i];

                        lastPeriod = methodBase.Name.LastIndexOf('.');
                        if (methodBase is ConstructorInfo || lastPeriod == -1)
                        {
                            pMethodDef->name = new S(methodBase.Name);
                        }
                        else
                        {
                            string nameMinusExclInterfaceName = methodBase.Name.Substring(lastPeriod + 1);
                            pMethodDef->name = new S(nameMinusExclInterfaceName);
                        }

                        pMethodDef->monoMethodInfo = new H(methodBase);
                        pMethodDef->pMetaData      = pMetaData;
                        pMethodDef->pParentType    = pTypeDef;
                        pMethodDef->flags          = (ushort)(
                            (methodBase.IsVirtual ? MetaData.METHODATTRIBUTES_VIRTUAL : 0) |
                            (methodBase.IsStatic ? MetaData.METHODATTRIBUTES_STATIC : 0));

                        // NOTE: All mono calls are considered internal calls
                        pMethodDef->implFlags  = (ushort)MetaData.METHODIMPLATTRIBUTES_INTERNALCALL;
                        pTypeDef->ppMethods[i] = pMethodDef;

                        // Assign vtable slots
                        if (methodBase.IsVirtual)
                        {
                            if (((MethodInfo)methodBase).GetBaseDefinition().DeclaringType == monoType)
                            {
                                // Allocate a new vTable slot if method is explicitly marked as NewSlot, or
                                // this is of type Object.
                                pMethodDef->vTableOfs = virtualOfs++;
                            }
                            else
                            {
                                tMD_MethodDef *pVirtualOveriddenMethod;
                                pVirtualOveriddenMethod = MetaData.FindVirtualOverriddenMethod(pTypeDef->pParent, pMethodDef);
                                if (pVirtualOveriddenMethod == null)
                                {
                                    if (pTypeDef->pParent->monoType == null)
                                    {
                                        // DNA types don't always have all base methods that Unity/Mono has.  In those
                                        // cases, just add the missing method to the VTable as a new virtual method.
                                        pMethodDef->vTableOfs = virtualOfs++;
                                    }
                                    else
                                    {
                                        Sys.Crash("Unable to find virtual override %s", (PTR)(pMethodDef->name));
                                    }
                                }
                                else
                                {
                                    pMethodDef->vTableOfs = pVirtualOveriddenMethod->vTableOfs;
                                }
                            }
                        }
                        else
                        {
                            // Dummy value - make it obvious it's not valid!
                            pMethodDef->vTableOfs = 0xffffffff;
                        }

                        pTypeDef->ppMethods[i] = pMethodDef;
                    }

                    // Create the virtual method table
                    pTypeDef->numVirtualMethods = virtualOfs;

                    // Resolve all members
                    pTypeDef->pVTable = (tMD_MethodDef **)Mem.mallocForever((SIZE_T)(pTypeDef->numVirtualMethods * sizeof(tMD_MethodDef *)));
                    // Copy initial vTable from parent
                    if (pTypeDef->pParent != null)
                    {
                        Mem.memcpy(pTypeDef->pVTable, pTypeDef->pParent->pVTable, (SIZE_T)(pTypeDef->pParent->numVirtualMethods * sizeof(tMD_MethodDef *)));
                    }
                    for (i = 0; i < pTypeDef->numMethods; i++)
                    {
                        pMethodDef = pTypeDef->ppMethods[i];
                        methodBase = H.ToObj(pMethodDef->monoMethodInfo) as MethodBase;

                        if (methodBase.IsStatic && methodBase.Name == ".cctor")
                        {
                            // This is a static constructor
                            pTypeDef->pStaticConstructor = pMethodDef;
                        }
                        if (methodBase.IsStatic && pTypeDef->pParent != null &&
                            methodBase.Name == "Finalize")
                        {
                            // This is a Finalizer method, but not for Object.
                            // Delibrately miss out Object's Finalizer because it's empty and will cause every object
                            // of any type to have a Finalizer which will be terrible for performance.
                            pTypeDef->pFinalizer = pMethodDef;
                        }
                        if (methodBase.IsVirtual)
                        {
                            if (pMethodDef->vTableOfs == 0xffffffff)
                            {
                                Sys.Crash("Illegal vtableoffset");
                            }
                            if (pMethodDef->vTableOfs >= pTypeDef->numVirtualMethods)
                            {
                                Sys.Crash("Illegal vtableoffset");
                            }
                            pTypeDef->pVTable[pMethodDef->vTableOfs] = pMethodDef;
                        }
                    }

                    // Find inherited Finalizer, if this type doesn't have an explicit Finalizer, and if there is one
                    if (pTypeDef->pFinalizer == null)
                    {
                        tMD_TypeDef *pInheritedType = pTypeDef->pParent;
                        while (pInheritedType != null)
                        {
                            if (pInheritedType->pFinalizer != null)
                            {
                                pTypeDef->pFinalizer = pInheritedType->pFinalizer;
                                break;
                            }
                            pInheritedType = pInheritedType->pParent;
                        }
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_MEMBERS)
            {
                pTypeDef->fillState = Type.TYPE_FILL_MEMBERS;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_MEMBERS)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_MEMBERS);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                // This only needs to be done for non-generic Type.types, or for generic type that are not a definition
                // I.e. Fully instantiated generic Type.types
                if (pTypeDef->isGenericDefinition == 0)
                {
                    // Fill all method definitions for this type
                    for (i = 0; i < pTypeDef->numMethods; i++)
                    {
                        pMethodDef = pTypeDef->ppMethods[i];
                        methodBase = H.ToObj(pMethodDef->monoMethodInfo) as MethodBase;
                        MonoType.Fill_MethodDef(pTypeDef, methodBase, pTypeDef->ppMethods[i], ppClassTypeArgs, ppMethodTypeArgs);
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_INTERFACES)
            {
                pTypeDef->fillState = Type.TYPE_FILL_INTERFACES;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_INTERFACES)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_INTERFACES);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                // This only needs to be done for non-generic Type.types, or for generic type that are not a definition
                // I.e. Fully instantiated generic Type.types
                if (pTypeDef->isGenericDefinition == 0)
                {
                    // Map all interface method calls. This only needs to be done for Classes, not Interfaces
                    // And is not done for generic definitions.
                    if (!monoType.IsInterface)
                    {
                        System.Type[] interfaceTypes = monoType.GetInterfaces();
                        pTypeDef->numInterfaces = (uint)interfaceTypes.Length;
                        if (interfaceTypes.Length > 0 && pTypeDef->isGenericDefinition == 0)
                        {
                            if (pTypeDef->pInterfaceMaps == null)
                            {
                                pTypeDef->pInterfaceMaps = (tInterfaceMap *)Mem.mallocForever((SIZE_T)(pTypeDef->numInterfaces * sizeof(tInterfaceMap)));
                            }
                            for (i = 0; i < interfaceTypes.Length; i++)
                            {
                                // Get the interface that this type implements
                                tMD_TypeDef *pInterface = MonoType.GetTypeForMonoType(interfaceTypes[i], ppClassTypeArgs, ppMethodTypeArgs);
                                Fill_TypeDef(pInterface, ppClassTypeArgs, null, Type.TYPE_FILL_VTABLE);
                                InterfaceMapping interfaceMapping = monoType.GetInterfaceMap(interfaceTypes[i]);
                                MetaData.Fill_TypeDef(pInterface, null, null);
                                tInterfaceMap *pMap = &pTypeDef->pInterfaceMaps[i];
                                pMap->pInterface      = pInterface;
                                pMap->pVTableLookup   = (uint *)Mem.mallocForever((SIZE_T)(pInterface->numVirtualMethods * sizeof(uint)));
                                pMap->ppMethodVLookup = (tMD_MethodDef **)Mem.mallocForever((SIZE_T)(pInterface->numVirtualMethods * sizeof(tMD_MethodDef *)));
                                MethodInfo[] interfaceMethods = interfaceMapping.InterfaceMethods;
                                MethodInfo[] targetMethods    = interfaceMapping.TargetMethods;
                                // Discover interface mapping for each interface method
                                for (j = 0; j < pInterface->numVirtualMethods; j++)
                                {
                                    tMD_MethodDef *pInterfaceMethod  = pInterface->pVTable[j];
                                    tMD_MethodDef *pOverriddenMethod = FindInterfaceOverriddenMethod(pInterfaceMethod, interfaceMethods, targetMethods);
                                    if (pOverriddenMethod == null)
                                    {
                                        Sys.Crash("Unable to find override method %s in type %s.%s for interface %s.%s", (PTR)(pInterfaceMethod->name),
                                                  (PTR)pTypeDef->nameSpace, (PTR)pTypeDef->name,
                                                  (PTR)pInterface->nameSpace, (PTR)pInterface->name);
                                    }
                                    pMap->pVTableLookup[j]   = pOverriddenMethod->vTableOfs;
                                    pMap->ppMethodVLookup[j] = pOverriddenMethod;
                                }
                            }
                        }
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_ALL)
            {
                pTypeDef->fillState = Type.TYPE_FILL_ALL;

                if (pParent != null && pParent->fillState < Type.TYPE_FILL_ALL)
                {
                    MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_ALL);
                }

                if (isDeferred != 0)
                {
                    MetaData.Fill_ResolveDeferred();
                }
            }

            Sys.log_f(2, "Mono Type:  %s.%s\n", (PTR)pTypeDef->nameSpace, (PTR)pTypeDef->name);
        }
Exemple #4
0
        // Loads a single table, returns pointer to table in memory.
        public static void *LoadSingleTable(tMetaData *pThis, tRVA *pRVA, int tableID, void **ppTable)
        {
            int             numRows = (int)pThis->tables.numRows[tableID];
            int             rowLen = tableRowSize[tableID];
            int             i, row;
            /*char**/ byte *pDef   = tableDefs[tableID];
            int             defLen = (int)S.strlen(pDef);
            void *          pRet;
            byte *          pSource = (byte *)*ppTable;
            byte *          pDest;
            uint            v = 0;
            SIZE_T          p = 0;

            // Allocate memory for destination table
            pRet  = Mem.malloc((SIZE_T)(numRows * rowLen));
            pDest = (byte *)pRet;

            // Load table
            int srcLen = 0;

            for (row = 0; row < numRows; row++)
            {
                byte *pSrcStart = pSource;
                for (i = 0; i < defLen; i += 2)
                {
                    byte d = pDef[i];
                    if (d < MAX_TABLES)
                    {
                        if (pThis->tables.numRows[d] < 0x10000)
                        {
                            // Use 16-bit offset
                            v        = GetU16(pSource);
                            pSource += 2;
                        }
                        else
                        {
                            // Use 32-bit offset
                            v        = GetU32(pSource);
                            pSource += 4;
                        }
                        v |= (uint)d << 24;
                    }
                    else
                    {
                        switch ((char)d)
                        {
                        case 'c':                         // 8-bit value
                            v = *(byte *)pSource;
                            pSource++;
                            break;

                        case 's':                         // 16-bit short
                            v        = GetU16(pSource);
                            pSource += 2;
                            break;

                        case 'i':                         // 32-bit int
                            v        = GetU32(pSource);
                            pSource += 4;
                            break;

                        case '0':
                        case '1':
                        case '2':
                        case '3':
                        case '4':
                        case '5':
                        case '6':
                        case '7':
                        case '8':
                        case '9':
                        case ':':
                        case ';':
                        case '<':
                        {
                            int            ofs            = pDef[i] - '0';
                            /*char*/ byte *pCoding        = codedTags[ofs];
                            int            tagBits        = codedTagBits[ofs];
                            byte           tag            = (byte)(*pSource & ((1 << tagBits) - 1));
                            int            idxIntoTableID = pCoding[tag];                          // The actual table index that we're looking for
                            if (idxIntoTableID < 0 || idxIntoTableID > MAX_TABLES)
                            {
                                Sys.Crash("Error: Bad table index: 0x%02x\n", idxIntoTableID);
                            }
                            if (pThis->tables.codedIndex32Bit[ofs] != 0)
                            {
                                // Use 32-bit number
                                v        = GetU32(pSource) >> tagBits;
                                pSource += 4;
                            }
                            else
                            {
                                // Use 16-bit number
                                v        = GetU16(pSource) >> tagBits;
                                pSource += 2;
                            }
                            v |= (uint)idxIntoTableID << 24;
                        }
                        break;

                        case 'S':                         // index into string heap
                            if (pThis->index32BitString != 0)
                            {
                                v        = GetU32(pSource);
                                pSource += 4;
                            }
                            else
                            {
                                v        = GetU16(pSource);
                                pSource += 2;
                            }
                            p = (PTR)(pThis->strings.pStart + v);
                            // NOTE: Quick way to validate metadata loading, check if all strings are valid!
                            if (S.isvalidstr((byte *)p) == 0)
                            {
                                Sys.Crash("Invalid string %s", (PTR)p);
                            }
                            break;

                        case 'G':                         // index into GUID heap
                            if (pThis->index32BitGUID != 0)
                            {
                                v        = GetU32(pSource);
                                pSource += 4;
                            }
                            else
                            {
                                v        = GetU16(pSource);
                                pSource += 2;
                            }
                            p = (PTR)(pThis->GUIDs.pGUID1 + ((v - 1) * 16));
                            break;

                        case 'B':                         // index into BLOB heap
                            if (pThis->index32BitBlob != 0)
                            {
                                v        = GetU32(pSource);
                                pSource += 4;
                            }
                            else
                            {
                                v        = GetU16(pSource);
                                pSource += 2;
                            }
                            p = (PTR)(pThis->blobs.pStart + v);
                            break;

                        case '^':                         // RVA to convert to pointer
                            v        = GetU32(pSource);
                            pSource += 4;
                            p        = (PTR)RVA.FindData(pRVA, v);
                            break;

                        case 'm':                         // Pointer to this metadata
                            p = (PTR)pThis;
                            break;

                        case 'l':                         // Is this the last table entry?
                            v = (row == numRows - 1) ? (uint)1 : (uint)0;
                            break;

                        case 'I':                         // Original table index
                            v = MetaData.MAKE_TABLE_INDEX((uint)tableID, (uint)(row + 1));
                            break;

                        case 'x':                         // Nothing, use 0
                            v = 0;
                            p = 0;
                            break;

                        default:
                            Sys.Crash("Cannot handle MetaData source definition character '%c' (0x%02X)\n", d, d);
                            break;
                        }
                    }
                    switch ((char)pDef[i + 1])
                    {
                    case '*':
                        *(SIZE_T *)pDest = p;
                        pDest           += sizeof(SIZE_T);
                        break;

                    case 'i':
                        *(uint *)pDest = v;
                        pDest         += 4;
                        break;

                    case 's':
                        *(ushort *)pDest = (ushort)v;
                        pDest           += 2;
                        break;

                    case 'c':
                        *(byte *)pDest = (byte)v;
                        pDest++;
                        break;

                    case 'x':
                        // Do nothing
                        break;

                    default:
                        Sys.Crash("Cannot handle MetaData destination definition character '%c'\n", pDef[i + 1]);
                        break;
                    }
                }
                if (srcLen == 0)
                {
                    srcLen = (int)(pSource - pSrcStart);
                }
            }

            Sys.log_f(1, "Loaded MetaData table 0x%02X; %d rows %d len\n", tableID, numRows, srcLen);

            // Update the parameter to the position after this table
            *ppTable = pSource;
            // Return new table information
            return(pRet);
        }
Exemple #5
0
        public static void LoadUserStrings(tMetaData *pThis, void *pStream, uint streamLen)
        {
            pThis->userStrings.pStart = (byte *)pStream;

            Sys.log_f(1, "Loaded User Strings\n");
        }
Exemple #6
0
        public static void LoadBlobs(tMetaData *pThis, void *pStream, uint streamLen)
        {
            pThis->blobs.pStart = (byte *)pStream;

            Sys.log_f(1, "Loaded blobs\n");
        }
Exemple #7
0
        public static uint Update(uint maxInstr, int *pReturnCode)
        {
            tThread *pThread;
            tThread *pPrevThread;
            uint     status;

            pThread = pAllThreads;
            // Set the initial thread to the RUNNING state.
            pThread->state = THREADSTATE_RUNNING;
            // Set the initial CurrentThread
            pCurrentThread = pThread;

            for (;;)
            {
                uint minSleepTime = 0xffffffff;
                int  threadExitValue;

                status = JIT_Execute.Execute(pThread, maxInstr);
                switch (status)
                {
                case Thread.THREAD_STATUS_EXIT:
                    threadExitValue = pThread->threadExitValue;
                    Sys.log_f(1, "Thread ID#%d exited. Return value: %d\n", (int)pThread->threadID, (int)threadExitValue);
                    // Remove the current thread from the running threads list.
                    // Note that this list may have changed since before the call to JitOps.JIT_Execute().
                    {
                        if (pAllThreads == pThread)
                        {
                            pAllThreads = pAllThreads->pNextThread;
                        }
                        else
                        {
                            tThread *pThread1 = pAllThreads;
                            while (pThread1->pNextThread != pThread)
                            {
                                pThread1 = pThread1->pNextThread;
                            }
                            pThread1->pNextThread = pThread1->pNextThread->pNextThread;
                        }
                    }
                    // Delete the current thread
                    Thread.Delete(pThread);
                    // If there are no more threads left running, then exit application (by returning)
                    // Threads that are unstarted or background do not stop the exit
                    // [Steve edit] Threads that are suspended also do not stop the exit. This is because you'd just
                    // wait forever for them if they did. Note that 'exit' doesn't mean tearing down the process
                    // like in a regular .NET runtime case. The application state is still there and we can make
                    // further calls into it to create new threads.
                    {
                        tThread *pThread2 = pAllThreads;
                        uint     canExit  = 1;
                        while (pThread2 != null)
                        {
                            if (
                                ((pThread2->state & THREADSTATE_BACKGROUND) == 0) &&
                                ((pThread2->state & (~THREADSTATE_BACKGROUND)) != THREADSTATE_UNSTARTED) &&
                                ((pThread2->state & (~THREADSTATE_BACKGROUND)) != THREADSTATE_SUSPENDED))
                            {
                                canExit = 0;
                                break;
                            }
                            pThread2 = pThread2->pNextThread;
                        }
                        if (canExit != 0)
                        {
                            if (pReturnCode != null)
                            {
                                *pReturnCode = threadExitValue;
                            }
                            return(THREADSTATE_STOPPED);
                        }
                    }
                    pThread = pAllThreads;     // This is not really correct, but it'll work for the time being
                    break;

                case THREAD_STATUS_RUNNING:
                case THREAD_STATUS_LOCK_EXIT:
                    // Nothing to do
                    break;

                case THREAD_STATUS_ASYNC:
                    pThread->pAsync->startTime = Sys.msTime();
                    break;
                }

                // Move on to the next thread.
                // Find the next thread that isn't sleeping or blocked on IO
                pPrevThread = pThread;
                for (;;)
                {
                    pThread = pThread->pNextThread;
                    if (pThread == null)
                    {
                        // That was the thread -- return!
                        return(THREADSTATE_RUNNING);
                    }
                    // Set the CurrentThread correctly
                    pCurrentThread = pThread;
                    if ((pThread->state & (~THREADSTATE_BACKGROUND)) != 0)
                    {
                        // Thread is not running
                        continue;
                    }
                    if (pThread->pAsync != null)
                    {
                        // Discover if whatever is being waited for is finished
                        tAsyncCall *pAsync = pThread->pAsync;
                        if (pAsync->sleepTime >= 0)
                        {
                            // This is a sleep
                            ulong nowTime          = Sys.msTime();
                            int   msSleepRemaining = pAsync->sleepTime - (int)(nowTime - pAsync->startTime);
                            if (msSleepRemaining <= 0)
                            {
                                // Sleep is finished
                                break;
                            }
                            // Sleep is not finished, so continue to next thread
                            if ((uint)msSleepRemaining < minSleepTime)
                            {
                                minSleepTime = (uint)msSleepRemaining;
                            }
                        }
                        else
                        {
                            // This is blocking IO, or a lock
                            tMethodState *pMethodState = pThread->pCurrentMethodState;
                            byte *        pThis;
                            uint          thisOfs;
                            uint          unblocked;

                            if (MetaData.METHOD_ISSTATIC(pMethodState->pMethod))
                            {
                                pThis   = null;
                                thisOfs = 0;
                            }
                            else
                            {
                                pThis   = *(byte **)pMethodState->pParamsLocals;
                                thisOfs = 4;
                            }
                            unblocked = ((fnInternalCallCheck)H.ToObj(pAsync->checkFn))(null, pThis, pMethodState->pParamsLocals + thisOfs, pMethodState->pEvalStack, pAsync);
                            if (unblocked != 0)
                            {
                                // The IO has unblocked, and the return value is ready.
                                // So delete the async object.
                                // TODO: The async->state object needs to be deleted somehow (maybe)
                                Mem.free(pAsync);
                                // And remove it from the thread
                                pThread->pAsync = null;
                                break;
                            }
                            minSleepTime = 5;
                        }
                    }
                    else
                    {
                        // Thread is ready to run
                        break;
                    }
                    if (pThread == pPrevThread)
                    {
                        // When it gets here, it means that all threads are currently blocked.
                        //printf("All blocked; sleep(%d)\n", minSleepTime);
                        Sys.SleepMS(minSleepTime);
                    }
                }
            }
        }
Exemple #8
0
        private static tCLIFile *LoadPEFile(byte[] image)
        {
            tCLIFile *pRet = ((tCLIFile *)Mem.malloc((SIZE_T)sizeof(tCLIFile)));

            System.Runtime.InteropServices.GCHandle handle = System.Runtime.InteropServices.GCHandle.Alloc(image, GCHandleType.Pinned);
            byte *pData = (byte *)handle.AddrOfPinnedObject();

            byte *pMSDOSHeader = (byte *)&(((byte *)pData)[0]);
            byte *pPEHeader;
            byte *pPEOptionalHeader;
            byte *pPESectionHeaders;
            byte *pCLIHeader;
            byte *pRawMetaData;

            int    i;
            uint   lfanew;
            ushort machine;
            int    numSections;
            //uint imageBase;
            //int fileAlignment;
            uint cliHeaderRVA;
            //uint cliHeaderSize;
            uint metaDataRVA;
            //uint metaDataSize;
            tMetaData *pMetaData;

            pRet->pRVA      = RVA.New();
            pRet->gcHandle  = (PTR)(System.IntPtr)handle;
            pRet->pMetaData = pMetaData = MetaData.New();

            lfanew            = *(uint *)&(pMSDOSHeader[0x3c]);
            pPEHeader         = pMSDOSHeader + lfanew + 4;
            pPEOptionalHeader = pPEHeader + 20;
            pPESectionHeaders = pPEOptionalHeader + 224;

            machine = *(ushort *)&(pPEHeader[0]);
            if (machine != DOT_NET_MACHINE)
            {
                return(null);
            }
            numSections = *(ushort *)&(pPEHeader[2]);

            //imageBase = *(uint*)&(pPEOptionalHeader[28]);
            //fileAlignment = *(int*)&(pPEOptionalHeader[36]);

            for (i = 0; i < numSections; i++)
            {
                byte *pSection = pPESectionHeaders + i * 40;
                RVA.Create(pRet->pRVA, pData, pSection);
            }

            cliHeaderRVA = *(uint *)&(pPEOptionalHeader[208]);
            //cliHeaderSize = *(uint*)&(pPEOptionalHeader[212]);

            pCLIHeader = (byte *)RVA.FindData(pRet->pRVA, cliHeaderRVA);

            metaDataRVA = *(uint *)&(pCLIHeader[8]);
            //metaDataSize = *(uint*)&(pCLIHeader[12]);
            pRet->entryPoint = *(uint *)&(pCLIHeader[20]);
            pRawMetaData     = (byte *)RVA.FindData(pRet->pRVA, metaDataRVA);

            // Load all metadata
            {
                uint  versionLen = *(uint *)&(pRawMetaData[12]);
                uint  ofs, numberOfStreams;
                void *pTableStream    = null;
                uint  tableStreamSize = 0;
                pRet->pVersion = &(pRawMetaData[16]);
                Sys.log_f(1, "CLI version: %s\n", (PTR)pRet->pVersion);
                ofs             = 16 + versionLen;
                numberOfStreams = *(ushort *)&(pRawMetaData[ofs + 2]);
                ofs            += 4;

                for (i = 0; i < (int)numberOfStreams; i++)
                {
                    uint  streamOffset = *(uint *)&pRawMetaData[ofs];
                    uint  streamSize   = *(uint *)&pRawMetaData[ofs + 4];
                    byte *pStreamName  = &pRawMetaData[ofs + 8];
                    void *pStream      = pRawMetaData + streamOffset;
                    ofs += (uint)((S.strlen(pStreamName) + 4) & (~0x3)) + 8;
                    if (S.strcasecmp(pStreamName, "#Strings") == 0)
                    {
                        MetaData.LoadStrings(pMetaData, pStream, streamSize);
                    }
                    else if (S.strcasecmp(pStreamName, "#US") == 0)
                    {
                        MetaData.LoadUserStrings(pMetaData, pStream, streamSize);
                    }
                    else if (S.strcasecmp(pStreamName, "#Blob") == 0)
                    {
                        MetaData.LoadBlobs(pMetaData, pStream, streamSize);
                    }
                    else if (S.strcasecmp(pStreamName, "#GUID") == 0)
                    {
                        MetaData.LoadGUIDs(pMetaData, pStream, streamSize);
                    }
                    else if (S.strcasecmp(pStreamName, "#~") == 0)
                    {
                        pTableStream    = pStream;
                        tableStreamSize = streamSize;
                    }
                }
                // Must load tables last
                if (pTableStream != null)
                {
                    MetaData.LoadTables(pMetaData, pRet->pRVA, pTableStream, (uint)tableStreamSize);
                }
            }

            // Mark all generic definition type and methods as such
            for (i = (int)pMetaData->tables.numRows[MetaDataTable.MD_TABLE_GENERICPARAM]; i > 0; i--)
            {
                tMD_GenericParam * pGenericParam;
                /*IDX_TABLE*/ uint ownerIdx;

                pGenericParam = (tMD_GenericParam *)MetaData.GetTableRow
                                    (pMetaData, MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_GENERICPARAM, (uint)i));
                ownerIdx = pGenericParam->owner;
                switch (MetaData.TABLE_ID(ownerIdx))
                {
                case MetaDataTable.MD_TABLE_TYPEDEF:
                {
                    tMD_TypeDef *pTypeDef = (tMD_TypeDef *)MetaData.GetTableRow(pMetaData, ownerIdx);
                    pTypeDef->isGenericDefinition = 1;
                }
                break;

                case MetaDataTable.MD_TABLE_METHODDEF:
                {
                    tMD_MethodDef *pMethodDef = (tMD_MethodDef *)MetaData.GetTableRow(pMetaData, ownerIdx);
                    pMethodDef->isGenericDefinition = 1;
                }
                break;

                default:
                    Sys.Crash("Wrong generic parameter owner: 0x%08x", ownerIdx);
                    break;
                }
            }

            // Mark all nested classes as such
            for (i = (int)pMetaData->tables.numRows[MetaDataTable.MD_TABLE_NESTEDCLASS]; i > 0; i--)
            {
                tMD_NestedClass *pNested;
                tMD_TypeDef *    pParent;
                tMD_TypeDef *    pChild;

                pNested           = (tMD_NestedClass *)MetaData.GetTableRow(pMetaData, MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_NESTEDCLASS, (uint)i));
                pParent           = (tMD_TypeDef *)MetaData.GetTableRow(pMetaData, pNested->enclosingClass);
                pChild            = (tMD_TypeDef *)MetaData.GetTableRow(pMetaData, pNested->nestedClass);
                pChild->pNestedIn = pParent;
            }

            return(pRet);
        }
Exemple #9
0
        public static void GarbageCollect()
        {
#if NO
            tHeapRoots   heapRoots;
            tHeapEntry * pNode;
            tHeapEntry **pUp = stackalloc tHeapEntry *[MAX_TREE_DEPTH * 2];
            int          top;
            tHeapEntry * pToDelete   = null;
            SIZE_T       orgHeapSize = trackHeapSize;
            uint         orgNumNodes = numNodes;
            #if DIAG_GC
            ulong startTime;
            #endif

            Mem.heapcheck();

            numCollections++;

        #if DIAG_GC
            startTime = microTime();
        #endif

            heapRoots.capacity     = 64;
            heapRoots.num          = 0;
            heapRoots.pHeapEntries = (tHeapRootEntry *)Mem.malloc(heapRoots.capacity * (SIZE_T)sizeof(tHeapRootEntry));

            Thread.GetHeapRoots(&heapRoots);
            CLIFile.GetHeapRoots(&heapRoots);

            // Mark phase
            while (heapRoots.num > 0)
            {
                tHeapRootEntry *pRootsEntry;
                uint            i;
                uint            moreRootsAdded = 0;
                uint            rootsEntryNumPointers;
                void **         pRootsEntryMem;

                // Get a piece of memory off the list of heap memory roots.
                pRootsEntry           = &heapRoots.pHeapEntries[heapRoots.num - 1];
                rootsEntryNumPointers = pRootsEntry->numPointers;
                pRootsEntryMem        = pRootsEntry->pMem;
                // Mark this entry as done
                pRootsEntry->numPointers = 0;
                pRootsEntry->pMem        = null;
                // Iterate through all pointers in it
                for (i = 0; i < rootsEntryNumPointers; i++)
                {
                    void *pMemRef = pRootsEntryMem[i];
                    // Quick escape for known non-memory
                    if (pMemRef == null)
                    {
                        continue;
                    }
                    // Find this piece of heap memory in the tracking tree.
                    // Note that the 2nd memory address comparison MUST be >, not >= as might be expected,
                    // to allow for a zero-sized memory to be detected (and not garbage collected) properly.
                    // E.g. The object class has zero memory.
                    pNode = pHeapTreeRoot;
                    while (pNode != nil)
                    {
                        if (pMemRef < (void *)pNode)
                        {
                            pNode = (tHeapEntry *)pNode->pLink[0];
                        }
                        else if ((byte *)pMemRef > ((byte *)pNode) + GetSize(pNode) + sizeof(tHeapEntry))
                        {
                            pNode = (tHeapEntry *)pNode->pLink[1];
                        }
                        else
                        {
                            // Found memory. See if it's already been marked.
                            // If it's already marked, then don't do anything.
                            // It it's not marked, then add all of its memory to the roots, and mark it.
                            if (pNode->marked == 0)
                            {
                                tMD_TypeDef *pType = pNode->pTypeDef;

                                // Not yet marked, so mark it, and add it to heap roots.
                                pNode->marked = 1;

                                // Don't look at the contents of strings, arrays of primitive Type.types, or WeakReferences
                                if (pType->stackType == EvalStack.EVALSTACK_O ||
                                    pType->stackType == EvalStack.EVALSTACK_VALUETYPE ||
                                    pType->stackType == EvalStack.EVALSTACK_PTR)
                                {
                                    if (pType != Type.types[Type.TYPE_SYSTEM_STRING] &&
                                        (!MetaData.TYPE_ISARRAY(pType) ||
                                         pType->pArrayElementType->stackType == EvalStack.EVALSTACK_O ||
                                         pType->pArrayElementType->stackType == EvalStack.EVALSTACK_VALUETYPE ||
                                         pType->pArrayElementType->stackType == EvalStack.EVALSTACK_PTR))
                                    {
                                        if (pType != Type.types[Type.TYPE_SYSTEM_WEAKREFERENCE])
                                        {
                                            Heap.SetRoots(&heapRoots, ((byte *)&pNode->pSync + sizeof(PTR)), GetSize(pNode));
                                            moreRootsAdded = 1;
                                        }
                                    }
                                }
                            }
                            break;
                        }
                    }
                }
                if (moreRootsAdded == 0)
                {
                    heapRoots.num--;
                }
            }

            Mem.free(heapRoots.pHeapEntries);

            // Sweep phase
            // Traverse nodes
            pUp[0] = pHeapTreeRoot;
            top    = 1;
            while (top != 0)
            {
                // Get this node
                pNode = pUp[--top];
                // Act on this node
                if (pNode->marked != 0)
                {
                    if (pNode->marked != 0xff)
                    {
                        // Still in use (but not marked undeletable), so unmark
                        pNode->marked = 0;
                    }
                }
                else
                {
                    // Not in use any more, so put in deletion queue if it does not need Finalizing
                    // If it does need Finalizing, then don't garbage collect, and put in Finalization queue.
                    if (pNode->needToFinalize != 0)
                    {
                        if (pNode->needToFinalize == 1)
                        {
                            Finalizer.AddFinalizer((/*HEAP_PTR*/ byte *)pNode + sizeof(tHeapEntry));
                            // Mark it has having been placed in the finalization queue.
                            // When it has been finalized, then this will be set to 0
                            pNode->needToFinalize = 2;
                            // If this object is being targetted by weak-ref(s), handle it
                            if (pNode->pSync != null)
                            {
                                RemoveWeakRefTarget(pNode, 0);
                                Mem.free(pNode->pSync);
                            }
                        }
                    }
                    else
                    {
                        // If this object is being targetted by weak-ref(s), handle it
                        if (pNode->pSync != null)
                        {
                            RemoveWeakRefTarget(pNode, 1);
                            Mem.free(pNode->pSync);
                        }
                        // Use pSync to point to next entry in this linked-list.
                        pNode->pSync = (tSync *)pToDelete;
                        pToDelete    = pNode;
                    }
                }
                // Get next node(s)
                if (pNode->pLink[1] != (PTR)nil)
                {
                    pUp[top++] = (tHeapEntry *)pNode->pLink[1];
                }
                if (pNode->pLink[0] != (PTR)nil)
                {
                    pUp[top++] = (tHeapEntry *)pNode->pLink[0];
                }
            }

            // Delete all unused memory nodes.
            while (pToDelete != null)
            {
                tHeapEntry *pThis = pToDelete;
                pToDelete     = (tHeapEntry *)(pToDelete->pSync);
                pHeapTreeRoot = TreeRemove(pHeapTreeRoot, pThis);
                if (pThis->monoHandle == 1)
                {
                    void *hptr = *(void **)((byte *)pThis + sizeof(tHeapEntry));
                    if (hptr != null)
                    {
                        H.Free(hptr);
                    }
                }
                numNodes--;
                trackHeapSize -= GetSize(pThis) + (uint)sizeof(tHeapEntry);
                Mem.free(pThis);
            }

            Mem.heapcheck();

        #if DIAG_GC
            gcTotalTime += microTime() - startTime;
        #endif

            Sys.log_f(1, "--- GARBAGE --- [Size: %d -> %d] [Nodes: %d -> %d]\n",
                      orgHeapSize, trackHeapSize, orgNumNodes, numNodes);

        #if DIAG_GC
            Sys.log_f(1, "GC time = %d ms\n", gcTotalTime / 1000);
        #endif
            #endif
        }
Exemple #10
0
        public static void Fill_TypeDef(tMD_TypeDef *pTypeDef,
                                        tMD_TypeDef **ppClassTypeArgs, tMD_TypeDef **ppMethodTypeArgs,
                                        uint resolve = Type.TYPE_FILL_ALL)
        {
            /*IDX_TABLE*/ uint firstIdx, lastIdx, token;
            uint         instanceMemSize, staticMemSize, virtualOfs, isDeferred, i, j;
            tMetaData *  pMetaData = pTypeDef->pMetaData;
            tMD_TypeDef *pParent;

            if (pTypeDef->fillState >= resolve)
            {
                return;
            }

            if (pTypeDef->monoType != null)
            {
                MonoType.Fill_TypeDef(pTypeDef, ppClassTypeArgs, ppMethodTypeArgs, resolve);
                return;
            }

//            Sys.printf("FILLING TYPE: %s\n", (PTR)pTypeDef->name);
//            string name = System.Runtime.InteropServices.Marshal.PtrToStringAnsi((System.IntPtr)pTypeDef->name);


            if (typesToFill == null)
            {
                Fill_StartDefer();
                isDeferred = 1;
            }
            else
            {
                isDeferred = 0;
            }

            if (resolve < Type.TYPE_FILL_ALL)
            {
                MetaData.Fill_Defer(pTypeDef, ppClassTypeArgs, ppMethodTypeArgs);
            }

            MetaData.Fill_GetDeferredTypeArgs(pTypeDef, ref ppClassTypeArgs, ref ppMethodTypeArgs);

            // Fill parent info
            if (pTypeDef->fillState < Type.TYPE_FILL_PARENTS)
            {
                pTypeDef->fillState = Type.TYPE_FILL_PARENTS;

                pTypeDef->pTypeDef = pTypeDef;
                if (pTypeDef->alignment == 0)
                {
                    pTypeDef->alignment = 1;
                }

                if (pTypeDef->pParent == null)
                {
                    pTypeDef->pParent = MetaData.GetTypeDefFromDefRefOrSpec(pMetaData, pTypeDef->extends, ppClassTypeArgs, ppMethodTypeArgs);
                }
                pParent = pTypeDef->pParent;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_PARENTS)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_PARENTS);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                    pTypeDef->hasMonoBase = pParent->hasMonoBase;
                    if (pParent->hasMonoBase == 0)
                    {
                        // If we have a mono base type, we have at least 1 non-blittable field
                        pTypeDef->blittable      = pParent->blittable;
                        pTypeDef->fixedBlittable = pParent->fixedBlittable;
                    }
                    else
                    {
                        pTypeDef->blittable = pTypeDef->fixedBlittable = 0;
                    }
                }
                else
                {
                    pTypeDef->blittable = pTypeDef->fixedBlittable = 1;
                }

                // If this type is an interface, then return 0
                if (pTypeDef->stackSize != 0)
                {
                    pTypeDef->isValueType = (byte)(pTypeDef->stackType != EvalStack.EVALSTACK_O ? 1 : 0);
                }
                else if (MetaData.TYPE_ISINTERFACE(pTypeDef))
                {
                    pTypeDef->isValueType = 0;
                }
                else if (pTypeDef->nameSpace[0] == 'S' && S.strcmp(pTypeDef->nameSpace, new S(ref scSystem, "System")) == 0)
                {
                    if ((pTypeDef->name[0] == 'V' && S.strcmp(pTypeDef->name, new S(ref scValueType, "ValueType")) == 0) ||
                        (pTypeDef->name[0] == 'E' && S.strcmp(pTypeDef->name, new S(ref scEnum, "Enum")) == 0))
                    {
                        pTypeDef->isValueType = 1;
                    }
                    else if (pTypeDef->name[0] == 'O' && S.strcmp(pTypeDef->name, new S(ref scObject, "Object")) == 0)
                    {
                        pTypeDef->isValueType = 0;
                    }
                    else if (pParent != null)
                    {
                        pTypeDef->isValueType = pParent->isValueType;
                    }
                }
                else if (pParent != null)
                {
                    pTypeDef->isValueType = pParent->isValueType;
                }

                // If not primed, then work out how many methods & fields there are.
                if (pTypeDef->isPrimed == 0)
                {
                    // Methods
                    lastIdx = (pTypeDef->isLast != 0) ?
                              MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_METHODDEF, pTypeDef->pMetaData->tables.numRows[MetaDataTable.MD_TABLE_METHODDEF]) :
                              (pTypeDef[1].methodList - 1);
                    pTypeDef->numMethods = lastIdx - pTypeDef->methodList + 1;
                    // Fields
                    lastIdx = (pTypeDef->isLast != 0) ?
                              MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_FIELDDEF, pTypeDef->pMetaData->tables.numRows[MetaDataTable.MD_TABLE_FIELDDEF]) :
                              (pTypeDef[1].fieldList - 1);
                    pTypeDef->numFields = lastIdx - pTypeDef->fieldList + 1;
                }

                // If this is a nested type, then find the namespace of it
                if (pTypeDef->pNestedIn != null)
                {
                    tMD_TypeDef *pRootTypeDef = pTypeDef->pNestedIn;
                    while (pRootTypeDef->pNestedIn != null)
                    {
                        pRootTypeDef = pRootTypeDef->pNestedIn;
                    }
                    pTypeDef->nameSpace = pRootTypeDef->nameSpace;
                }

                // If this is an enum type, then pretend its stack type is its underlying type
                if (pTypeDef->pParent == Type.types[Type.TYPE_SYSTEM_ENUM])
                {
                    pTypeDef->stackType        = EvalStack.EVALSTACK_INT32;
                    pTypeDef->stackSize        = sizeof(PTR);
                    pTypeDef->instanceMemSize  = 4;
                    pTypeDef->arrayElementSize = 4;
                    pTypeDef->blittable        = pTypeDef->fixedBlittable = 1;
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }
            else
            {
                pParent = pTypeDef->pParent;
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_LAYOUT)
            {
                pTypeDef->fillState = Type.TYPE_FILL_LAYOUT;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_LAYOUT)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_LAYOUT);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                if (pTypeDef->isGenericDefinition == 0)
                {
                    // Resolve fields, members, interfaces.
                    // Only needs to be done if it's not a generic definition type

                    // It it's not a value-type and the stack-size is not preset, then set it up now.
                    // It needs to be done here as non-static fields in non-value type can point to the containing type
                    if (pTypeDef->stackSize == 0 && pTypeDef->isValueType == 0)
                    {
                        pTypeDef->stackType = EvalStack.EVALSTACK_O;
                        pTypeDef->stackSize = sizeof(PTR);
                        pTypeDef->alignment = sizeof(PTR);
                    }

                    // Resolve all fields - instance ONLY at this point,
                    // because static fields in value-Type.types can be of the containing type, and the size is not yet known.
                    firstIdx      = pTypeDef->fieldList;
                    lastIdx       = firstIdx + pTypeDef->numFields - 1;
                    staticMemSize = 0;
                    if (pTypeDef->numFields > 0)
                    {
                        pTypeDef->ppFields = (tMD_FieldDef **)Mem.mallocForever((SIZE_T)(pTypeDef->numFields * sizeof(tMD_FieldDef *)));
                    }
                    instanceMemSize = (pParent == null ? 0 : pTypeDef->pParent->instanceMemSize);
                    if (pTypeDef->hasMonoBase != 0 && pParent->hasMonoBase == 0)
                    {
                        // Some DNA types like String are actually wrappers around mono objects.  In those cases, we need to allocate the
                        // space in the instance memory for the GCHandle to the mono object.  We distinguish this case from the case
                        // where we're just extending a Mono Type object by checking if the parent also has the hasMonoBase flag set.
                        instanceMemSize += (uint)sizeof(void *);
                    }
                    for (token = firstIdx, i = 0; token <= lastIdx; token++, i++)
                    {
                        tMD_FieldDef *pFieldDef;

                        pFieldDef = MetaData.GetFieldDefFromDefOrRef(pMetaData, token, ppClassTypeArgs, ppMethodTypeArgs);
                        if (!MetaData.FIELD_ISSTATIC(pFieldDef))
                        {
                            // Only handle non-static fields at the moment
                            if (pTypeDef->pGenericDefinition != null)
                            {
                                // If this is a generic instantiation type, then all field defs need to be copied,
                                // as there will be lots of different instantiations.
                                tMD_FieldDef *pFieldCopy = ((tMD_FieldDef *)Mem.mallocForever((SIZE_T)sizeof(tMD_FieldDef)));
                                Mem.memcpy(pFieldCopy, pFieldDef, (SIZE_T)sizeof(tMD_FieldDef));
                                pFieldDef = pFieldCopy;
                            }
                            if (MetaData.FIELD_ISLITERAL(pFieldDef) || MetaData.FIELD_HASFIELDRVA(pFieldDef))
                            {
                                // If it's a literal, then analyse the field, but don't include it in any memory allocation
                                // If is has an RVA, then analyse the field, but don't include it in any memory allocation
                                MetaData.Fill_FieldDef(pTypeDef, pFieldDef, 0, null, ppClassTypeArgs);
                            }
                            else
                            {
                                MetaData.Fill_FieldDef(pTypeDef, pFieldDef, instanceMemSize, &(pTypeDef->alignment), ppClassTypeArgs);
                                instanceMemSize = pFieldDef->memOffset + pFieldDef->memSize;
                            }
                            // Update blittable and fixedBlittable status for type - if any non-blittable fields are included set to 0
                            if (pTypeDef->blittable != 0 || pTypeDef->fixedBlittable != 0)
                            {
                                if (pFieldDef->pType->isValueType == 0 || pFieldDef->pType->blittable == 0)
                                {
                                    pTypeDef->blittable = pTypeDef->fixedBlittable = 0;
                                }
                                else if (pFieldDef->pType->typeInitId == Type.TYPE_SYSTEM_INTPTR ||
                                         pFieldDef->pType->typeInitId == Type.TYPE_SYSTEM_UINTPTR)
                                {
                                    pTypeDef->fixedBlittable = 0;
                                }
                            }
                            pTypeDef->ppFields[i] = pFieldDef;
                        }
                    }
                    if (pTypeDef->instanceMemSize == 0)
                    {
                        pTypeDef->instanceMemSize = (instanceMemSize + (pTypeDef->alignment - 1)) & ~(pTypeDef->alignment - 1);
                    }

                    // Sort out stack type and size.
                    // Note that this may already be set, as some basic type have this preset;
                    // or if it's not a value-type it'll already be set
                    if (pTypeDef->stackSize == 0)
                    {
                        // if it gets here then it must be a value type
                        pTypeDef->stackType = EvalStack.EVALSTACK_VALUETYPE;
                        pTypeDef->stackSize = pTypeDef->instanceMemSize;
                    }

                    // Sort out array element size. Note that some basic type will have this preset.
                    if (pTypeDef->arrayElementSize == 0)
                    {
                        pTypeDef->arrayElementSize = pTypeDef->stackSize;
                    }

                    // Make sure stack size is even multiple of stack alignment
                    pTypeDef->stackSize = (pTypeDef->stackSize + (STACK_ALIGNMENT - 1)) & ~(STACK_ALIGNMENT - 1);

                    // Handle static fields
                    for (token = firstIdx, i = 0; token <= lastIdx; token++, i++)
                    {
                        tMD_FieldDef *pFieldDef;

                        pFieldDef = MetaData.GetFieldDefFromDefOrRef(pMetaData, token, ppClassTypeArgs, ppMethodTypeArgs);
                        if (MetaData.FIELD_ISSTATIC(pFieldDef))
                        {
                            // Only handle static fields here
                            if (pTypeDef->pGenericDefinition != null)
                            {
                                // If this is a generic instantiation type, then all field defs need to be copied,
                                // as there will be lots of different instantiations.
                                tMD_FieldDef *pFieldCopy = ((tMD_FieldDef *)Mem.mallocForever((SIZE_T)sizeof(tMD_FieldDef)));
                                Mem.memcpy(pFieldCopy, pFieldDef, (SIZE_T)sizeof(tMD_FieldDef));
                                pFieldDef = pFieldCopy;
                            }
                            if (MetaData.FIELD_ISLITERAL(pFieldDef) || MetaData.FIELD_HASFIELDRVA(pFieldDef))
                            {
                                // If it's a literal, then analyse the field, but don't include it in any memory allocation
                                // If is has an RVA, then analyse the field, but don't include it in any memory allocation
                                MetaData.Fill_FieldDef(pTypeDef, pFieldDef, 0, null, ppClassTypeArgs);
                            }
                            else
                            {
                                MetaData.Fill_FieldDef(pTypeDef, pFieldDef, staticMemSize, null, ppClassTypeArgs);
                                staticMemSize += pFieldDef->memSize;
                            }
                            pTypeDef->ppFields[i] = pFieldDef;
                        }
                    }

                    if (staticMemSize > 0)
                    {
                        pTypeDef->pStaticFields = (byte *)Mem.mallocForever((SIZE_T)staticMemSize);
                        Mem.memset(pTypeDef->pStaticFields, 0, staticMemSize);
                        // Set the field addresses (->pMemory) of all static fields
                        for (i = 0; i < pTypeDef->numFields; i++)
                        {
                            tMD_FieldDef *pFieldDef;

                            pFieldDef = pTypeDef->ppFields[i];
                            if (MetaData.FIELD_ISSTATIC(pFieldDef) && pFieldDef->pMemory == null)
                            {
                                // Only set it if it isn't already set. It will be already set if this field has an RVA
                                pFieldDef->pMemory = pTypeDef->pStaticFields + pFieldDef->memOffset;
                            }
                        }
                        pTypeDef->staticFieldSize = staticMemSize;
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            // This only needs to be done for non-generic Type.types, or for generic type that are not a definition
            // I.e. Fully instantiated generic Type.types
            if (pTypeDef->fillState < Type.TYPE_FILL_VTABLE)
            {
                pTypeDef->fillState = Type.TYPE_FILL_VTABLE;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_VTABLE)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_VTABLE);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                if (pTypeDef->isGenericDefinition == 0)
                {
                    virtualOfs = (pParent != null) ? pParent->numVirtualMethods : 0;

                    // Must create the virtual method table BEFORE any other type resolution is done
                    // Note that this must not do ANY filling of type or methods.
                    // This is to ensure that the parent object(s) in any type inheritance hierachy are allocated
                    // their virtual method offset before derived Type.types.
                    firstIdx = pTypeDef->methodList;
                    lastIdx  = firstIdx + pTypeDef->numMethods - 1;
                    for (token = firstIdx; token <= lastIdx; token++)
                    {
                        tMD_MethodDef *pMethodDef;

                        pMethodDef = MetaData.GetMethodDefFromDefRefOrSpec(pMetaData, token, ppClassTypeArgs, ppMethodTypeArgs);

                        //Sys.printf("Method: %s\n", (PTR)pMethodDef->name);

                        // This is needed, so array resolution can work correctly and FindVirtualOverriddenMethod() can work.
                        pMethodDef->pParentType = pTypeDef;

                        if (MetaData.METHOD_ISVIRTUAL(pMethodDef))
                        {
                            if (MetaData.METHOD_ISNEWSLOT(pMethodDef) || pTypeDef->pParent == null)
                            {
                                // Allocate a new vTable slot if method is explicitly marked as NewSlot, or
                                // this is of type Object.
                                pMethodDef->vTableOfs = virtualOfs++;
                            }
                            else
                            {
                                tMD_MethodDef *pVirtualOveriddenMethod;
                                pVirtualOveriddenMethod = FindVirtualOverriddenMethod(pTypeDef->pParent, pMethodDef);
                                if (pVirtualOveriddenMethod == null)
                                {
                                    Sys.Crash("Unable to find virtual override method for %s %s", (PTR)pTypeDef->name, (PTR)pMethodDef->name);
                                }
                                pMethodDef->vTableOfs = pVirtualOveriddenMethod->vTableOfs;
                            }
                        }
                        else
                        {
                            // Dummy value - make it obvious it's not valid!
                            pMethodDef->vTableOfs = 0xffffffff;
                        }
                    }

                    // Create the virtual method table
                    pTypeDef->numVirtualMethods = virtualOfs;

                    // Resolve all members
                    firstIdx            = pTypeDef->methodList;
                    lastIdx             = firstIdx + pTypeDef->numMethods - 1;
                    pTypeDef->ppMethods = (tMD_MethodDef **)Mem.mallocForever((SIZE_T)(pTypeDef->numMethods * sizeof(tMD_MethodDef *)));
                    pTypeDef->pVTable   = (tMD_MethodDef **)Mem.mallocForever((SIZE_T)(pTypeDef->numVirtualMethods * sizeof(tMD_MethodDef *)));
                    // Copy initial vTable from parent
                    if (pTypeDef->pParent != null)
                    {
                        if (pTypeDef->pParent->fillState != Type.TYPE_FILL_MEMBERS)
                        {
                            Fill_TypeDef(pTypeDef->pParent, null, null, Type.TYPE_FILL_MEMBERS);
                        }
                        Mem.memcpy(pTypeDef->pVTable, pTypeDef->pParent->pVTable, (SIZE_T)(pTypeDef->pParent->numVirtualMethods * sizeof(tMD_MethodDef *)));
                    }
                    for (token = firstIdx, i = 0; token <= lastIdx; token++, i++)
                    {
                        tMD_MethodDef *pMethodDef;

                        pMethodDef = MetaData.GetMethodDefFromDefRefOrSpec(pMetaData, token, ppClassTypeArgs, ppMethodTypeArgs);
                        if (pTypeDef->pGenericDefinition != null)
                        {
                            // If this is a generic instantiation type, then all method defs need to be copied,
                            // as there will be lots of different instantiations.
                            tMD_MethodDef *pMethodCopy = ((tMD_MethodDef *)Mem.mallocForever((SIZE_T)sizeof(tMD_MethodDef)));
                            Mem.memcpy(pMethodCopy, pMethodDef, (SIZE_T)sizeof(tMD_MethodDef));
                            pMethodDef = pMethodCopy;
                        }
                        if (MetaData.METHOD_ISSTATIC(pMethodDef) && S.strcmp(pMethodDef->name, ".cctor") == 0)
                        {
                            // This is a static constructor
                            pTypeDef->pStaticConstructor = pMethodDef;
                        }
                        if (!MetaData.METHOD_ISSTATIC(pMethodDef) && pTypeDef->pParent != null &&
                            S.strcmp(pMethodDef->name, "Finalize") == 0)
                        {
                            // This is a Finalizer method, but not for Object.
                            // Delibrately miss out Object's Finalizer because it's empty and will cause every object
                            // of any type to have a Finalizer which will be terrible for performance.
                            pTypeDef->pFinalizer = pMethodDef;
                        }
                        if (MetaData.METHOD_ISVIRTUAL(pMethodDef))
                        {
                            // This is a virtual method, so enter it in the vTable
                            pTypeDef->pVTable[pMethodDef->vTableOfs] = pMethodDef;
                        }
                        pTypeDef->ppMethods[i] = pMethodDef;
                    }
                    // Find inherited Finalizer, if this type doesn't have an explicit Finalizer, and if there is one
                    if (pTypeDef->pFinalizer == null)
                    {
                        tMD_TypeDef *pInheritedType = pTypeDef->pParent;
                        while (pInheritedType != null)
                        {
                            if (pInheritedType->pFinalizer != null)
                            {
                                pTypeDef->pFinalizer = pInheritedType->pFinalizer;
                                break;
                            }
                            pInheritedType = pInheritedType->pParent;
                        }
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_MEMBERS)
            {
                pTypeDef->fillState = Type.TYPE_FILL_MEMBERS;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_MEMBERS)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_MEMBERS);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                if (pTypeDef->isGenericDefinition == 0)
                {
                    // Fill all method definitions for this type
                    for (i = 0; i < pTypeDef->numMethods; i++)
                    {
                        MetaData.Fill_MethodDef(pTypeDef, pTypeDef->ppMethods[i], ppClassTypeArgs, ppMethodTypeArgs);
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_INTERFACES)
            {
                pTypeDef->fillState = Type.TYPE_FILL_INTERFACES;

                if (pParent != null)
                {
                    if (pParent->fillState < Type.TYPE_FILL_INTERFACES)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_INTERFACES);
                    }
                    else if (pParent->fillState < Type.TYPE_FILL_ALL)
                    {
                        MetaData.Fill_Defer(pParent, null, null);
                    }
                }

                if (pTypeDef->isGenericDefinition == 0 && !MetaData.TYPE_ISINTERFACE(pTypeDef))
                {
                    if (pParent != null && pParent->fillState < Type.TYPE_FILL_INTERFACES)
                    {
                        MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_INTERFACES);
                    }

                    // Map all interface method calls. This only needs to be done for Classes, not Interfaces
                    // And is not done for generic definitions.
                    firstIdx = 0;
                    if (pTypeDef->pParent != null)
                    {
                        j = pTypeDef->numInterfaces = pTypeDef->pParent->numInterfaces;
                    }
                    else
                    {
                        j = 0;
                    }

                    lastIdx = firstIdx;
                    for (i = 1; i <= pMetaData->tables.numRows[MetaDataTable.MD_TABLE_INTERFACEIMPL]; i++)
                    {
                        tMD_InterfaceImpl *pInterfaceImpl;
                        pInterfaceImpl = (tMD_InterfaceImpl *)MetaData.GetTableRow(pMetaData, MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_INTERFACEIMPL, i));
                        if (pInterfaceImpl->class_ == pTypeDef->tableIndex)
                        {
                            // count how many interfaces are implemented
                            pTypeDef->numInterfaces++;
                            if (firstIdx == 0)
                            {
                                firstIdx = MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_INTERFACEIMPL, i);
                            }
                            lastIdx = MetaData.MAKE_TABLE_INDEX(MetaDataTable.MD_TABLE_INTERFACEIMPL, i);
                        }
                    }

                    if (pTypeDef->numInterfaces > 0)
                    {
                        uint mapNum;

                        pTypeDef->pInterfaceMaps = (tInterfaceMap *)Mem.mallocForever((SIZE_T)(pTypeDef->numInterfaces * sizeof(tInterfaceMap)));
                        // Copy interface maps from parent type
                        if (j > 0)
                        {
                            Mem.memcpy(pTypeDef->pInterfaceMaps, pTypeDef->pParent->pInterfaceMaps, (SIZE_T)(j * sizeof(tInterfaceMap)));
                        }
                        mapNum = j;
                        if (firstIdx > 0)
                        {
                            for (token = firstIdx; token <= lastIdx; token++, mapNum++)
                            {
                                tMD_InterfaceImpl *pInterfaceImpl;

                                pInterfaceImpl = (tMD_InterfaceImpl *)MetaData.GetTableRow(pMetaData, token);
                                if (pInterfaceImpl->class_ == pTypeDef->tableIndex)
                                {
                                    tMD_TypeDef *  pInterface;
                                    tInterfaceMap *pMap;

                                    // Get the interface that this type implements
                                    pInterface = MetaData.GetTypeDefFromDefRefOrSpec(pMetaData, pInterfaceImpl->interface_, ppClassTypeArgs, ppMethodTypeArgs);
                                    MetaData.Fill_TypeDef(pInterface, null, null, Type.TYPE_FILL_INTERFACES);
                                    pMap                  = &pTypeDef->pInterfaceMaps[mapNum];
                                    pMap->pInterface      = pInterface;
                                    pMap->pVTableLookup   = (uint *)Mem.mallocForever((SIZE_T)(pInterface->numVirtualMethods * sizeof(uint)));
                                    pMap->ppMethodVLookup = (tMD_MethodDef **)Mem.mallocForever((SIZE_T)(pInterface->numVirtualMethods * sizeof(tMD_MethodDef *)));
                                    // Discover interface mapping for each interface method
                                    for (i = 0; i < pInterface->numVirtualMethods; i++)
                                    {
                                        tMD_MethodDef *pInterfaceMethod;
                                        tMD_MethodDef *pOverriddenMethod;
                                        pInterfaceMethod         = pInterface->pVTable[i];
                                        pOverriddenMethod        = FindVirtualOverriddenMethod(pTypeDef, pInterfaceMethod);
                                        pMap->pVTableLookup[i]   = pOverriddenMethod->vTableOfs;
                                        pMap->ppMethodVLookup[i] = pOverriddenMethod;
                                    }
                                }
                                else
                                {
                                    Sys.Crash("Problem with interface class");
                                }
                            }
                        }
                    }
                }

                if (pTypeDef->fillState >= resolve)
                {
                    return;
                }
            }

            if (pTypeDef->fillState < Type.TYPE_FILL_ALL)
            {
                pTypeDef->fillState = Type.TYPE_FILL_ALL;

                if (pTypeDef->isGenericDefinition == 0 && pTypeDef->stackSize == 0)
                {
                    j = 0;
                }

                if (pParent != null && pParent->fillState < Type.TYPE_FILL_ALL)
                {
                    MetaData.Fill_TypeDef(pParent, null, null, Type.TYPE_FILL_ALL);
                }

                if (isDeferred != 0)
                {
                    Fill_ResolveDeferred();
                }
            }

            Sys.log_f(2, "Type:  %s.%s\n", (PTR)pTypeDef->nameSpace, (PTR)pTypeDef->name);
        }