/**
         * It uses the sieve of Eratosthenes to discard several composite numbers in
         * some appropriate range (at the moment {@code [this, this + 1024]}). After
         * this process it applies the Miller-Rabin test to the numbers that were
         * not discarded in the sieve.
         *
         * @see BigInteger#nextProbablePrime()
         * @see #millerRabin(BigInteger, int)
         */

        public static BigInteger NextProbablePrime(BigInteger n)
        {
            // PRE: n >= 0
            int i, j;
            int certainty;
            int gapSize = 1024;             // for searching of the next probable prime number

            int[]      modules     = new int[primes.Length];
            bool[]     isDivisible = new bool[gapSize];
            BigInteger startPoint;
            BigInteger probPrime;

            // If n < "last prime of table" searches next prime in the table
            if ((n.numberLength == 1) && (n.Digits[0] >= 0) &&
                (n.Digits[0] < primes[primes.Length - 1]))
            {
                for (i = 0; n.Digits[0] >= primes[i]; i++)
                {
                    ;
                }
                return(BIprimes[i]);
            }

            /*
             * Creates a "N" enough big to hold the next probable prime Note that: N <
             * "next prime" < 2*N
             */
            startPoint = new BigInteger(1, n.numberLength,
                                        new int[n.numberLength + 1]);
            Array.Copy(n.Digits, 0, startPoint.Digits, 0, n.numberLength);
            // To fix N to the "next odd number"
            if (BigInteger.TestBit(n, 0))
            {
                Elementary.inplaceAdd(startPoint, 2);
            }
            else
            {
                startPoint.Digits[0] |= 1;
            }
            // To set the improved certainly of Miller-Rabin
            j = startPoint.BitLength;
            for (certainty = 2; j < BITS[certainty]; certainty++)
            {
                ;
            }
            // To calculate modules: N mod p1, N mod p2, ... for first primes.
            for (i = 0; i < primes.Length; i++)
            {
                modules[i] = Division.Remainder(startPoint, primes[i]) - gapSize;
            }
            while (true)
            {
                // At this point, all numbers in the gap are initialized as
                // probably primes
                // Arrays.fill(isDivisible, false);
                for (int k = 0; k < isDivisible.Length; k++)
                {
                    isDivisible[k] = false;
                }

                // To discard multiples of first primes
                for (i = 0; i < primes.Length; i++)
                {
                    modules[i] = (modules[i] + gapSize) % primes[i];
                    j          = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
                    for (; j < gapSize; j += primes[i])
                    {
                        isDivisible[j] = true;
                    }
                }
                // To execute Miller-Rabin for non-divisible numbers by all first
                // primes
                for (j = 0; j < gapSize; j++)
                {
                    if (!isDivisible[j])
                    {
                        probPrime = startPoint.Copy();
                        Elementary.inplaceAdd(probPrime, j);

                        if (MillerRabin(probPrime, certainty))
                        {
                            return(probPrime);
                        }
                    }
                }
                Elementary.inplaceAdd(startPoint, gapSize);
            }
        }
Exemple #2
0
        private static bool TryParse(string s, int radix, out BigInteger value, out Exception exception)
        {
            if (String.IsNullOrEmpty(s))
            {
                exception = new FormatException(Messages.math11);
                value     = null;
                return(false);
            }
            if ((radix < CharHelper.MIN_RADIX) || (radix > CharHelper.MAX_RADIX))
            {
                // math.11=Radix out of range
                exception = new FormatException(Messages.math12);
                value     = null;
                return(false);
            }

            int sign;

            int[] digits;
            int   numberLength;
            int   stringLength = s.Length;
            int   startChar;
            int   endChar = stringLength;

            if (s[0] == '-')
            {
                sign      = -1;
                startChar = 1;
                stringLength--;
            }
            else
            {
                sign      = 1;
                startChar = 0;
            }

            /*
             * We use the following algorithm: split a string into portions of n
             * char and convert each portion to an integer according to the
             * radix. Then convert an exp(radix, n) based number to binary using the
             * multiplication method. See D. Knuth, The Art of Computer Programming,
             * vol. 2.
             */

            try
            {
                int charsPerInt          = Conversion.digitFitInInt[radix];
                int bigRadixDigitsLength = stringLength / charsPerInt;
                int topChars             = stringLength % charsPerInt;

                if (topChars != 0)
                {
                    bigRadixDigitsLength++;
                }
                digits = new int[bigRadixDigitsLength];
                // Get the maximal power of radix that fits in int
                int bigRadix = Conversion.bigRadices[radix - 2];
                // Parse an input string and accumulate the BigInteger's magnitude
                int digitIndex = 0; // index of digits array
                int substrEnd  = startChar + ((topChars == 0) ? charsPerInt : topChars);
                int newDigit;

                for (int substrStart = startChar;
                     substrStart < endChar;
                     substrStart = substrEnd, substrEnd = substrStart
                                                          + charsPerInt)
                {
                    int bigRadixDigit = Convert.ToInt32(s.Substring(substrStart, substrEnd - substrStart), radix);
                    newDigit             = Multiplication.MultiplyByInt(digits, digitIndex, bigRadix);
                    newDigit            += Elementary.inplaceAdd(digits, digitIndex, bigRadixDigit);
                    digits[digitIndex++] = newDigit;
                }

                numberLength = digitIndex;
            }
            catch (Exception ex)
            {
                exception = ex;
                value     = null;
                return(false);
            }

            value              = new BigInteger();
            value.sign         = sign;
            value.numberLength = numberLength;
            value.digits       = digits;
            value.CutOffLeadingZeroes();
            exception = null;
            return(true);
        }
        /**
         * Calculates a.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular
         * Inverse - Revised"
         */

        public static BigInteger ModInverseMontgomery(BigInteger a, BigInteger p)
        {
            if (a.Sign == 0)
            {
                // ZERO hasn't inverse
                // math.19: BigInteger not invertible
                throw new ArithmeticException(Messages.math19);
            }

            if (!BigInteger.TestBit(p, 0))
            {
                // montgomery inverse require even modulo
                return(ModInverseLorencz(a, p));
            }

            int m = p.numberLength * 32;
            // PRE: a \in [1, p - 1]
            BigInteger u, v, r, s;

            u = p.Copy();             // make copy to use inplace method
            v = a.Copy();
            int max = System.Math.Max(v.numberLength, u.numberLength);

            r           = new BigInteger(1, 1, new int[max + 1]);
            s           = new BigInteger(1, 1, new int[max + 1]);
            s.Digits[0] = 1;
            // s == 1 && v == 0

            int k = 0;

            int lsbu = u.LowestSetBit;
            int lsbv = v.LowestSetBit;
            int toShift;

            if (lsbu > lsbv)
            {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(r, lsbv);
                k += lsbu - lsbv;
            }
            else
            {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(s, lsbu);
                k += lsbv - lsbu;
            }

            r.Sign = 1;
            while (v.Sign > 0)
            {
                // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))

                while (u.CompareTo(v) > BigInteger.EQUALS)
                {
                    Elementary.inplaceSubtract(u, v);
                    toShift = u.LowestSetBit;
                    BitLevel.InplaceShiftRight(u, toShift);
                    Elementary.inplaceAdd(r, s);
                    BitLevel.InplaceShiftLeft(s, toShift);
                    k += toShift;
                }

                while (u.CompareTo(v) <= BigInteger.EQUALS)
                {
                    Elementary.inplaceSubtract(v, u);
                    if (v.Sign == 0)
                    {
                        break;
                    }
                    toShift = v.LowestSetBit;
                    BitLevel.InplaceShiftRight(v, toShift);
                    Elementary.inplaceAdd(s, r);
                    BitLevel.InplaceShiftLeft(r, toShift);
                    k += toShift;
                }
            }
            if (!u.IsOne)
            {
                // in u is stored the gcd
                // math.19: BigInteger not invertible.
                throw new ArithmeticException(Messages.math19);
            }
            if (r.CompareTo(p) >= BigInteger.EQUALS)
            {
                Elementary.inplaceSubtract(r, p);
            }

            r = p - r;

            // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
            int n1 = CalcN(p);

            if (k > m)
            {
                r = MonPro(r, BigInteger.One, p, n1);
                k = k - m;
            }

            r = MonPro(r, BigInteger.GetPowerOfTwo(m - k), p, n1);
            return(r);
        }