Exemple #1
0
        /// <summary>
        /// Calculates the centroids of the clusters
        /// </summary>
        public void CalculateClusterCentroids()
        {
            //Console.WriteLine("Cluster Centroid calculation:");
            for (int j = 0; j < this.Clusters.Count; j++)
            {
                ClusterCentroid c = this.Clusters[j];
                double          l = 0.0;
                c.PixelCount    = 1;
                c.RSum          = 0;
                c.GSum          = 0;
                c.BSum          = 0;
                c.MembershipSum = 0;

                for (int i = 0; i < this.Points.Count; i++)
                {
                    ClusterPoint p = this.Points[i];
                    l                = Math.Pow(U[i, j], this.Fuzzyness);
                    c.RSum          += l * p.PixelColor.R;
                    c.GSum          += l * p.PixelColor.G;
                    c.BSum          += l * p.PixelColor.B;
                    c.MembershipSum += l;

                    if (U[i, j] == p.ClusterIndex)
                    {
                        c.PixelCount += 1;
                    }
                }

                c.PixelColor = Color.FromArgb((byte)(c.RSum / c.MembershipSum), (byte)(c.GSum / c.MembershipSum), (byte)(c.BSum / c.MembershipSum));
            }

            //update the original image
            Bitmap tempImage = new Bitmap(myImageWidth, myImageHeight, PixelFormat.Format32bppRgb);

            for (int j = 0; j < this.Points.Count; j++)
            {
                for (int i = 0; i < this.Clusters.Count; i++)
                {
                    ClusterPoint p = this.Points[j];
                    if (U[j, i] == p.ClusterIndex)
                    {
                        tempImage.SetPixel((int)p.X, (int)p.Y, this.Clusters[i].PixelColor);
                    }
                }
            }

            processedImage = tempImage;
        }
Exemple #2
0
        /// <summary>
        /// Initialize the algorithm with points and initial clusters
        /// </summary>
        /// <param name="points">The list of Points objects</param>
        /// <param name="clusters">The list of Clusters objects</param>
        /// <param name="fuzzy">The fuzzyness factor to be used, constant</param>
        /// <param name="myImage">A working image, so that the GUI working image can be updated</param>
        /// <param name="numCluster">The number of clusters requested by the user from the GUI</param>
        public FCM(List <ClusterPoint> points, List <ClusterCentroid> clusters, float fuzzy, Bitmap myImage, int numCluster)
        {
            if (points == null)
            {
                throw new ArgumentNullException("points");
            }

            if (clusters == null)
            {
                throw new ArgumentNullException("clusters");
            }


            processedImage = (Bitmap)myImage.Clone();


            this.Points        = points;
            this.Clusters      = clusters;
            this.myImageHeight = myImage.Height;
            this.myImageWidth  = myImage.Width;
            this.myImage       = new Bitmap(myImageWidth, myImageHeight, PixelFormat.Format32bppRgb);
            U = new double[this.Points.Count, this.Clusters.Count];
            this.Fuzzyness = fuzzy;

            double diff;

            // Iterate through all points to create initial U matrix
            for (int i = 0; i < this.Points.Count; i++)
            {
                ClusterPoint p   = this.Points[i];
                double       sum = 0.0;

                for (int j = 0; j < this.Clusters.Count; j++)
                {
                    ClusterCentroid c = this.Clusters[j];
                    diff    = Math.Sqrt(Math.Pow(CalculateEuclideanDistance(p, c), 2.0));
                    U[i, j] = (diff == 0) ? Eps : diff;
                    sum    += U[i, j];
                }
            }

            this.RecalculateClusterMembershipValues();
        }
Exemple #3
0
 /// <summary>
 /// Calculates Euclidean Distance distance between a point and a cluster centroid
 /// </summary>
 /// <param name="p">Point</param>
 /// <param name="c">Centroid</param>
 /// <returns>Calculated distance</returns>
 private double CalculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)
 {
     return(Math.Sqrt(Math.Pow(p.PixelColor.R - c.PixelColor.R, 2.0) + Math.Pow(p.PixelColor.G - c.PixelColor.G, 2.0) + Math.Pow(p.PixelColor.B - c.PixelColor.B, 2.0)));
 }
Exemple #4
0
        // This method will run on a thread other than the UI thread.
        // Be sure not to manipulate any Windows Forms controls created
        // on the UI thread from this method.
        private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
        {
            backgroundWorker.ReportProgress(0, "Memulai...");

            filteredImage = (Bitmap)pictureBox1.Image.Clone();
            int    numClusters   = (int)numericUpDown2.Value;
            int    maxIterations = (int)numericUpDown3.Value;
            double accuracy      = (double)numericUpDown4.Value;



            List <ClusterPoint> points = new List <ClusterPoint>();


            for (int row = 0; row < originalImage.Width; ++row)
            {
                for (int col = 0; col < originalImage.Height; ++col)
                {
                    Color c2 = originalImage.GetPixel(row, col);
                    points.Add(new ClusterPoint(row, col, c2));
                }
            }



            List <ClusterCentroid> centroids = new List <ClusterCentroid>();

            //Create random points to use a the cluster centroids
            Random random = new Random();

            for (int i = 0; i < numClusters; i++)
            {
                int randomNumber1 = random.Next(sourceImage.Width);
                int randomNumber2 = random.Next(sourceImage.Height);
                centroids.Add(new ClusterCentroid(randomNumber1, randomNumber2, filteredImage.GetPixel(randomNumber1, randomNumber2)));
            }
            FCM alg = new FCM(points, centroids, 2, filteredImage, (int)numericUpDown2.Value);


            int k = 0;

            do
            {
                if ((backgroundWorker.CancellationPending == true))
                {
                    e.Cancel = true;
                    break;
                }
                else
                {
                    k++;
                    alg.J = alg.CalculateObjectiveFunction();
                    alg.CalculateClusterCentroids();
                    alg.Step();
                    double Jnew = alg.CalculateObjectiveFunction();
                    Console.WriteLine("Run method i={0} accuracy = {1} delta={2}", k, alg.J, Math.Abs(alg.J - Jnew));
                    toolStripStatusLabel2.Text = "Precision " + Math.Abs(alg.J - Jnew);

                    // Format and display the TimeSpan value.
                    string elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", stopWatch.Elapsed.Hours, stopWatch.Elapsed.Minutes, stopWatch.Elapsed.Seconds, stopWatch.Elapsed.Milliseconds / 10);
                    toolStripStatusLabel3.Text = "Durasi: " + elapsedTime;

                    pictureBox2.Image = (Bitmap)alg.getProcessedImage;
                    backgroundWorker.ReportProgress((100 * k) / maxIterations, "Iterasi " + k);

                    if (Math.Abs(alg.J - Jnew) < accuracy)
                    {
                        break;
                    }
                }
            }while (maxIterations > k);
            Console.WriteLine("Done.");

            stopWatch.Stop();
            // Get the elapsed time as a TimeSpan value.
            TimeSpan ts = stopWatch.Elapsed;

            // Save the segmented image
            pictureBox2.Image = (Bitmap)alg.getProcessedImage.Clone();
            alg.getProcessedImage.Save("segmented.png");

            // Create a new image for each cluster in order to extract the features from the original image
            double[,] Matrix = alg.U;
            Bitmap[] bmapArray = new Bitmap[centroids.Count];
            for (int i = 0; i < centroids.Count; i++)
            {
                bmapArray[i] = new Bitmap(sourceImage.Width, sourceImage.Height, PixelFormat.Format32bppRgb);
            }

            for (int j = 0; j < points.Count; j++)
            {
                for (int i = 0; i < centroids.Count; i++)
                {
                    ClusterPoint p = points[j];
                    if (Matrix[j, i] == p.ClusterIndex)
                    {
                        bmapArray[i].SetPixel((int)p.X, (int)p.Y, p.OriginalPixelColor);
                    }
                }
            }

            // Save the image for each segmented cluster
            for (int i = 0; i < centroids.Count; i++)
            {
                bmapArray[i].Save("Cluster" + i + ".png");
            }


            // Resource cleanup...more work to do here to avoid memory problems!!!
            backgroundWorker.ReportProgress(100, "Done in " + k + " iterasi.");
            ////alg.Dispose();
            for (int i = 0; i < points.Count; i++)
            {
                points[i] = null;
            }
            for (int i = 0; i < centroids.Count; i++)
            {
                centroids[i] = null;
            }
            alg = null;
            //centroids.Clear();
            //points.Clear();
        }