/// <summary> /// Get the hidden layer features from a visible layer /// --------- /// Assuming the RBM has been trained (so that weights for the network have been learned), /// run the network on a set of hidden units, to get a sample of the visible units. /// /// Parameters /// --------- /// data: A matrix where each row consists of the states of the hidden units. /// /// Returns /// --------- /// visible_states: A matrix where each row consists of the visible units activated from the hidden /// units in the data matrix passed in. /// </summary> public double[][] GetHiddenLayer(double[][] dataArray) { var num_examples = dataArray.Length; // Create a matrix, where each row is to be the hidden units (plus a bias unit) // sampled from a training example. var hidden_states = RealMatrix.Ones(num_examples, m_numHiddenElements + 1); var data = new RealMatrix(dataArray); // Insert bias units of 1 into the first column of data. data = data.InsertCol(1); // np.insert(data, 0, 1, axis = 1) // Calculate the activations of the hidden units. var hiddenActivations = data * m_weights; // Calculate the probabilities of turning the hidden units on. //激活函数是指的如何把“激活的神经元的特征”通过函数把特征保留并映射出来,这是神经网络能解决非线性问题关键 //激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。 var hiddenProbs = ActivationFunctions.Logistic(hiddenActivations); // Turn the hidden units on with their specified probabilities. //以指定的概率打开隐藏的单元 hidden_states = hiddenProbs > Distributions.UniformRandromMatrix(num_examples, m_numHiddenElements + 1); // Ignore the bias units. hidden_states = hidden_states.RemoveFirstCol(); return(hidden_states); }
/// <summary> /// Day dream - Reconstruct a randrom matrix (An interesting way of seeing strong features the machine has learnt). /// /// Randomly initialize the visible units once, and start running alternating Gibbs sampling steps /// (where each step consists of updating all the hidden units, and then updating all of the visible units), /// taking a sample of the visible units at each step. /// /// Note that we only initialize the network "once", so these samples are correlated. /// --------- /// samples: A matrix, where each row is a sample of the visible units produced while the network was daydreaming。 /// </summary> /// <param name="numberOfSamples">How many images/dreams</param> /// <returns>Array of Reconstructed dreams</returns> public double[][] DayDream(int numberOfSamples) { //Create a matrix, where each row is to be a sample of of the visible units //(with an extra bias unit), initialized to all ones. var data = RealMatrix.Ones(numberOfSamples, m_numVisibleElements + 1); //Take the first sample from a uniform distribution. data.Update(0, 1, Distributions.UniformRandromMatrixBool(1, m_numVisibleElements), 1); //Start the alternating Gibbs sampling. //Note that we keep the hidden units binary states, but leave the //visible units as real probabilities. //See section 3 of Hinton's "A Practical Guide to Training Restricted Boltzmann Machines" for more on why. for (int i = 0; i < numberOfSamples; i++) { var visible = data.Submatrix(i, 0, 1).ToVector(); //Calculate the activations of the hidden units. var hidden_activations = (visible * m_weights).ToVector(); //Calculate the probabilities of turning the hidden units on. var hidden_probs = ActivationFunctions.Logistic(hidden_activations); //Turn the hidden units on with their specified probabilities. var hidden_states = hidden_probs > RVector.Random(m_numHiddenElements + 1); //Always fix the bias unit to 1. hidden_states[0] = 1; //Recalculate the probabilities that the visible units are on. var visible_activations = (hidden_states * m_weights.Transpose).ToVector(); var visible_probs = ActivationFunctions.Logistic(visible_activations); var visible_states = visible_probs > RVector.Random(m_numVisibleElements + 1); data.Update(visible_states, 0, false, i, 0); } return(data.Submatrix(0, 1).ToArray()); }
/// <summary> /// Get the visible layer from a hidden layer /// --------- /// Assuming the RBM has been trained (so that weights for the network have been learned), /// run the network on a set of visible units, to get a sample of the hidden units. /// Parameters /// ---------- /// data: A matrix where each row consists of the states of the visible units. /// /// Returns /// ------- /// hidden_states: A matrix where each row consists of the hidden units activated from the visible /// units in the data matrix passed in. /// </summary> public double[][] GetVisibleLayer(double[][] dataArray) { var numExamples = dataArray.Length; // Create a matrix, where each row is to be the visible units (plus a bias unit) // sampled from a training example. var data = new RealMatrix(dataArray); // Insert bias units of 1 into the first column of data. data = data.InsertCol(1); // Calculate the activations of the visible units. var visibleActivations = data * m_weights.Transpose; // Calculate the probabilities of turning the visible units on. var visibleProbs = ActivationFunctions.Logistic(visibleActivations); // Turn the visible units on with their specified probabilities. var visibleStates = visibleProbs > Distributions.UniformRandromMatrix(numExamples, m_numVisibleElements + 1); // Always fix the bias unit to 1 // Ignore the bias units. visibleStates = visibleStates.RemoveFirstCol(); //visible_states[:,1:] return(visibleStates); }
public double[][] DayDream(int numOfDreams) { var dreamRawData = Distributions.UniformRandromMatrixBool(numOfDreams, m_rbms[0].NumberOfVisibleElements); var ret = Reconstruct(dreamRawData); return(ret); }
public RBM(int numVisible, int numHidden, double learningRate = 0.1) { m_numHiddenElements = numHidden; m_numVisibleElements = numVisible; m_learningRate = learningRate; m_weights = 0.1 * Distributions.GaussianMatrix(numVisible, numHidden); //随机权,避免局部最优 // Insert weights for the bias units into the first row and first column. m_weights = m_weights.InsertRow(0); m_weights = m_weights.InsertCol(0); }
//public void AsyncTrain(double[][] data, int maxEpochs) //{ // double e = 0; // var f = new TaskFactory(); // f.StartNew(new Action(() => Train(data, maxEpochs, out e))); //} //原理参考:http://www.cnblogs.com/pinard/p/6530523.html或者http://deeplearning.net/tutorial/rbm.html public void Train(double[][] dataArray, int maxEpochs, out double error) { error = 0; var numExamples = dataArray.Length; var data = new RealMatrix(dataArray); // Insert bias units of 1 into the first column. data = data.InsertCol(1); Stopwatch sw = new Stopwatch();//准确地测量运行时间。 for (int i = 0; i < maxEpochs; i++) { sw.Start(); //Clamp to the data and sample from the hidden units. //This is the "positive CD phase", aka the reality phase var posHiddenActivations = data * m_weights; var posHiddenProbs = ActivationFunctions.Logistic(posHiddenActivations); //隐层神经元被激活的概率 posHiddenProbs = posHiddenProbs.Update(0, 1, 1); // 相当于P(hj=1|v),Fix the bias unit var posHiddenStates = posHiddenProbs > Distributions.UniformRandromMatrix(numExamples, m_numHiddenElements + 1); // Note that we're using the activation "probabilities" of the hidden states, not the hidden states // themselves, when computing associations. We could also use the states; see section 3 of Hinton's // "A Practical Guide to Training Restricted Boltzmann Machines" for more var posAssociations = data.Transpose * posHiddenProbs; // Reconstruct the visible units and sample again from the hidden units // This is the "negative CD phase", aka the daydreaming phase var negVisibleActivations = posHiddenStates * m_weights.Transpose; var negVisibleProbs = ActivationFunctions.Logistic(negVisibleActivations); //隐藏层到可见层 negVisibleProbs = negVisibleProbs.Update(0, 1, 1); //相当于P(vj=1|h) var negHiddenActivations = negVisibleProbs * m_weights; var negHiddenProbs = ActivationFunctions.Logistic(negHiddenActivations); // Note, again, that we're using the activation "probabilities" when computing associations, not the states themselves var negAssociations = negVisibleProbs.Transpose * negHiddenProbs; // Update weights m_weights = m_weights + (m_learningRate * ((posAssociations - negAssociations) / numExamples)); sw.Stop(); //计时结束 error = (((data - negVisibleProbs) ^ 2).Average()) / dataArray.Length; //误差除以size RaiseEpochEnd(i, error); //记录每次学习的误差 Console.WriteLine("Epoch {0}: error is {1}, computation time (ms): {2}", i, error, sw.ElapsedMilliseconds); sw.Reset(); //运行时间sw清零 } RaiseTrainEnd(maxEpochs, error); }
public static RealMatrix SymetricRandom(int m) { var A = new RealMatrix(m, m); var r = new Random(); for (int i = 0; i < m; i++) { for (int j = 0; j < i; j++) { A[i, j] = Distributions.GetRandomDouble(); A[j, i] = A[i, j]; } } return(A); }
public static RVector Random(int size) { return(Distributions.UniformRandromVector(size)); }