private FakeImageObject GetRandomFromObjectList()
        {
            FakeImageObject result = new FakeImageObject();

            if (hitClosesImagesList == null)
            {
                hitClosesImagesList = new int[objectList.Count];
            }

            if (hitClosesImagesList.Where(x => x == 1).Count() == objectList.Count)
            {
                result.SetPropertiesFromImageObject(objectList.First());
                return(result);
            }

            int imageIndex;

            do
            {
                imageIndex = random.Next(0, objectList.Count - 1);
            } while (hitClosesImagesList[imageIndex] != 0);

            hitClosesImagesList[imageIndex] = 1;
            result.SetPropertiesFromImageObject(objectList.ToArray()[imageIndex]);
            return(result);
        }
        private FakeImageObject GetClosestObjectFromObjectList(FakeImageObject fakeImage)
        {
            FakeImageObject result = new FakeImageObject();

            if (hitClosesImagesList == null)
            {
                hitClosesImagesList = new int[objectList.Count];
            }

            ImageObject[] classes   = objectList.ToArray();
            double[]      distances = new double[objectList.Count];
            for (int i = 0; i < objectList.Count; i++)
            {
                distances[i] =
                    Math.Abs(areaCoefficient * (classes[i].Area - fakeImage.Area)) +
                    Math.Abs(densityCoefficient * (classes[i].Density - fakeImage.Density)) +
                    Math.Abs(elongationCoefficient * (classes[i].Elongation - fakeImage.Elongation)) +
                    Math.Abs(perimeterCoefficient * (classes[i].Perimeter - fakeImage.Perimeter)) +
                    Math.Abs(massCenterCoefficient * Math.Sqrt(
                                 (classes[i].MassCenter.X - fakeImage.MassCenter.X) * (classes[i].MassCenter.X - fakeImage.MassCenter.X) +
                                 (classes[i].MassCenter.Y - fakeImage.MassCenter.Y) * (classes[i].MassCenter.Y - fakeImage.MassCenter.Y))
                             );
            }

            int    index    = 0;
            double minRange = distances[0];

            for (int i = 0; i < objectList.Count; i++)
            {
                if (hitClosesImagesList[i] == 0 && distances[i] <= minRange)
                {
                    minRange = distances[i];
                    index    = i;
                }
            }

            result.SetPropertiesFromImageObject(classes[index]);
            hitClosesImagesList[index] = 1;

            return(result);
        }
        public void SetObjectsToGroups()
        {
            FakeImageObject[] mediansArray = new FakeImageObject[kMedians];
            hitClosesImagesList = null;
            for (int i = 0; i < kMedians; i++)
            {
                mediansArray[i] = GetRandomFromObjectList();
            }
            hitClosesImagesList = null;

            List <ImageObject>[] imageClasses = new List <ImageObject> [kMedians];
            for (int i = 0; i < kMedians; i++)
            {
                imageClasses[i] = new List <ImageObject>();
            }

            foreach (ImageObject imageObject in objectList)
            {
                imageClasses[GetClassIndex(mediansArray, imageObject)].Add(imageObject);
            }

            bool flag = true;

            while (flag)
            {
                flag         = false;
                mediansArray = new FakeImageObject[kMedians];

                hitClosesImagesList = null;
                for (int i = 0; i < kMedians; i++)
                {
                    mediansArray[i] = GetClosestObjectFromObjectList(GetAverageFromImageList(imageClasses[i]));
                }

                hitClosesImagesList = null;

                List <ImageObject>[] tempImageClasses = new List <ImageObject> [kMedians];
                for (int i = 0; i < kMedians; i++)
                {
                    tempImageClasses[i] = new List <ImageObject>();
                }
                foreach (List <ImageObject> objectList1 in imageClasses)
                {
                    foreach (ImageObject imageObject in objectList1)
                    {
                        tempImageClasses[GetClassIndex(mediansArray, imageObject)].Add(imageObject);
                    }
                }

                for (int i = 0; i < kMedians; i++)
                {
                    if (tempImageClasses[i].Equals(imageClasses[i]))
                    {
                        flag = true;
                    }
                }

                imageClasses = tempImageClasses;
            }

            foreach (List <ImageObject> imageObjectList in imageClasses)
            {
                foreach (ImageObject imageObject in imageObjectList)
                {
                    foreach (Point point in imageObject.Points)
                    {
                        groupMap[point.X, point.Y] = Array.IndexOf(imageClasses, imageObjectList) + 2;
                    }
                }
            }
        }
Exemple #4
0
        private FakeImageObject GetRandomFromObjectList()
        {
            FakeImageObject result = new FakeImageObject();

            if (hitClosesImagesList == null)
            {
                hitClosesImagesList = new int[objectList.Count];
            }

            if (hitClosesImagesList.Where(x => x == 1).Count() == objectList.Count)
            {
                result.SetPropertiesFromImageObject(objectList.First());
                return result;
            }

            int imageIndex;
            do
            {
                imageIndex = random.Next(0, objectList.Count - 1);
            } while (hitClosesImagesList[imageIndex] != 0);

            hitClosesImagesList[imageIndex] = 1;
            result.SetPropertiesFromImageObject(objectList.ToArray()[imageIndex]);
            return result;
        }
Exemple #5
0
        private FakeImageObject GetClosestObjectFromObjectList(FakeImageObject fakeImage)
        {
            FakeImageObject result = new FakeImageObject();
            if (hitClosesImagesList == null)
            {
                hitClosesImagesList = new int[objectList.Count];
            }

            ImageObject[] classes = objectList.ToArray();
            double[] distances = new double[objectList.Count];
            for (int i = 0; i < objectList.Count; i++)
            {
                distances[i] =
                        Math.Abs(areaCoefficient * (classes[i].Area - fakeImage.Area)) +
                        Math.Abs(densityCoefficient * (classes[i].Density - fakeImage.Density)) +
                        Math.Abs(elongationCoefficient * (classes[i].Elongation - fakeImage.Elongation)) +
                        Math.Abs(perimeterCoefficient * (classes[i].Perimeter - fakeImage.Perimeter)) +
                        Math.Abs(massCenterCoefficient * Math.Sqrt(
                        (classes[i].MassCenter.X - fakeImage.MassCenter.X) * (classes[i].MassCenter.X - fakeImage.MassCenter.X) +
                        (classes[i].MassCenter.Y - fakeImage.MassCenter.Y) * (classes[i].MassCenter.Y - fakeImage.MassCenter.Y))
                        );
            }

            int index = 0;
            double minRange = distances[0];
            for (int i = 0; i < objectList.Count; i++)
            {
                if (hitClosesImagesList[i] == 0 && distances[i] <= minRange)
                {
                    minRange = distances[i];
                    index = i;
                }
            }

            result.SetPropertiesFromImageObject(classes[index]);
            hitClosesImagesList[index] = 1;

            return result;
        }
Exemple #6
0
        private int GetClassIndex(FakeImageObject[] classes, ImageObject imageObject)
        {
            double[] distances = new double[classes.Count()];

            for (int i = 0; i < classes.Count(); i++)
            {
                distances[i] =
                        Math.Abs(areaCoefficient * (classes[i].Area - imageObject.Area)) +
                        Math.Abs(densityCoefficient * (classes[i].Density - imageObject.Density)) +
                        Math.Abs(elongationCoefficient * (classes[i].Elongation - imageObject.Elongation)) +
                        Math.Abs(perimeterCoefficient * (classes[i].Perimeter - imageObject.Perimeter)) +
                        Math.Abs(massCenterCoefficient * Math.Sqrt(
                        (classes[i].MassCenter.X - imageObject.MassCenter.X) * (classes[i].MassCenter.X - imageObject.MassCenter.X) +
                        (classes[i].MassCenter.Y - imageObject.MassCenter.Y) * (classes[i].MassCenter.Y - imageObject.MassCenter.Y))
                        );
            }

            return Array.IndexOf(distances, distances.Min());
        }
Exemple #7
0
        public void SetObjectsToGroups()
        {
            FakeImageObject[] mediansArray = new FakeImageObject[kMedians];
            hitClosesImagesList = null;
            for (int i = 0; i < kMedians; i++)
            {
                mediansArray[i] = GetRandomFromObjectList();
            }
            hitClosesImagesList = null;

            List<ImageObject>[] imageClasses = new List<ImageObject>[kMedians];
            for (int i = 0; i < kMedians; i++)
            {
                imageClasses[i] = new List<ImageObject>();
            }

            foreach (ImageObject imageObject in objectList)
            {
                imageClasses[GetClassIndex(mediansArray, imageObject)].Add(imageObject);
            }

            bool flag = true;
            while (flag)
            {
                flag = false;
                mediansArray = new FakeImageObject[kMedians];

                hitClosesImagesList = null;
                for (int i = 0; i < kMedians; i++)
                {
                    mediansArray[i] = GetClosestObjectFromObjectList(GetAverageFromImageList(imageClasses[i]));
                }

                hitClosesImagesList = null;

                List<ImageObject>[] tempImageClasses = new List<ImageObject>[kMedians];
                for (int i = 0; i < kMedians; i++)
                {
                    tempImageClasses[i] = new List<ImageObject>();
                }
                foreach (List<ImageObject> objectList1 in imageClasses)
                {
                    foreach (ImageObject imageObject in objectList1)
                    {
                        tempImageClasses[GetClassIndex(mediansArray, imageObject)].Add(imageObject);
                    }
                }

                for (int i = 0; i < kMedians; i++)
                {
                    if (tempImageClasses[i].Equals(imageClasses[i]))
                    {
                        flag = true;
                    }
                }

                imageClasses = tempImageClasses;
            }

            foreach (List<ImageObject> imageObjectList in imageClasses)
            {
                foreach (ImageObject imageObject in imageObjectList)
                {
                    foreach (Point point in imageObject.Points)
                    {
                        groupMap[point.X, point.Y] = Array.IndexOf(imageClasses, imageObjectList) + 2;
                    }
                }
            }
        }