Exemple #1
0
        /// <summary>
        /// Constructor
        /// </summary>
        /// <param name="graph">graph to indicate dimension of the individual</param>
        public Individual(GraphInfo graph)
        {
            this.cubeDimension = graph.GetDimension();
            int edgeCount = (int)Math.Pow(2, this.cubeDimension - 1) * this.cubeDimension;

            this.graph        = graph;
            this.edgeActivity = new byte[edgeCount];
            this.vertexCount  = (int)Math.Pow(2, this.cubeDimension);
        }
Exemple #2
0
 /// <summary>
 /// Constructor
 /// </summary>
 /// <param name="daddy">individual whose properties but not edgeActivity i taken</param>
 public Individual(Individual daddy)
 {
     this.cubeDimension  = daddy.cubeDimension;
     this.vertexCount    = daddy.vertexCount;
     this.graph          = daddy.graph;
     this.changed        = daddy.changed;
     this.spanner        = daddy.spanner;
     this.fitnessValue   = daddy.fitnessValue;
     this.objectiveValue = daddy.objectiveValue;
     this.edgeActivity   = new byte[daddy.edgeActivity.Length];
 }
Exemple #3
0
 /// <summary>
 /// Get an instance of the graph
 /// </summary>
 /// <param name="dim">dimension of the graph</param>
 /// <returns>the instance of the graph</returns>
 public static GraphInfo GetInstance(int dim)
 {
     if (theInstance == null)
     {
         try
         {
             theInstance = LoadFullCube(dim);
         }
         catch
         {
             theInstance = new GraphInfo(dim);
         }
     }
     return(theInstance);
 }
Exemple #4
0
 /// <summary>
 /// Sets the structure of the individuals (i.e. the hypercube graph)
 /// </summary>
 /// <param name="example">hypercube graph</param>
 public void SetSampleIndividual(GraphInfo example)
 {
     this.sampleIndividual = example;
 }
Exemple #5
0
        /// <summary>
        /// GA running method
        /// </summary>
        /// <returns>best computed individual</returns>
        public Individual RunIt()
        {
            if (!Settings.parallel)
            {
                Console.WriteLine("Starting run no. " + (number + 1));
                Console.WriteLine("Initializing run no. " + (number + 1));
            }

            Stopwatch sw = Stopwatch.StartNew();
            //Set the rng seed
            GraphInfo graph = GraphInfo.GetInstance(s.cubeDimension);
            Tools     tools = Tools.GetInstance(s.cubeDimension);

            rng = new Random(number);
            logger.Log(s);
            ea = s.GetEVA(logger, rng);
            foreach (var op in ea.GetOperators())
            {
                logger.Log(Logger.Level.SETTINGS, op.ToLog());
            }
            foreach (var se in ea.GetMating())
            {
                logger.Log(Logger.Level.SETTINGS, se.ToLog() + " MAT");
            }
            foreach (var se in ea.GetEnvironmental())
            {
                logger.Log(Logger.Level.SETTINGS, se.ToLog() + " ENV");
            }

            //Create new population
            Population pop = new Population();

            pop.SetPopulationSize(s.popSize);
            pop.SetSampleIndividual(graph);
            pop.CreateRandomInitialPopulation(rng);

            if (!Settings.parallel)
            {
                Console.WriteLine("Finished in {0:f2} seconds", sw.Elapsed.TotalSeconds);
            }
            logger.Log(Logger.Level.INFO, "Initialization finished in " +
                       String.Format("{0:f2}", sw.Elapsed.TotalSeconds) + " seconds");

            //Run the algorithm
            if (!Settings.parallel || number == 0)
            {
                Console.WriteLine("Running run no. " + (number + 1));
            }
            try
            {
                for (int i = 0; i < s.maxGen; i++)
                {
                    sw.Restart();
                    Program.localDetourSpanners = 0;
                    //Make one generation
                    ea.Evolve(pop);
                    List <Individual> sorted = pop.GetSortedIndividuals();
                    //Log the best individual to console.
                    if ((i + 1) % Settings.showGap == 0 && (!Settings.parallel || number == 0))
                    {
                        int idx = 0;
                        while (idx < s.popSize && sorted[idx].Is_3_Spanner(false) < 1)
                        {
                            idx++;
                        }
                        if (idx >= s.popSize)
                        {
                            idx = 0;
                        }
                        Console.Write("Gen: " + (i + 1));
                        Console.Write(" obj: " + sorted[idx].GetObjectiveValue() + " at " + idx);
                        if (Settings.task == "eds")
                        {
                            Console.Write(" tc: " + sorted[idx].GetColourCount());
                        }
                        if (Settings.task != "eds")
                        {
                            Console.Write(" fit: {0:f0}", sorted[0].GetFitnessValue());
                        }
                        else
                        {
                            Console.Write(" fit: {0:f3}", sorted[0].GetFitnessValue());
                            Console.Write(" comps: ");
                            for (int j = 0; j < Settings.maxColours; j++)
                            {
                                Console.Write(sorted[0].CountComponents((byte)(j + 1)));
                                Console.Write(" ");
                            }
                        }
                        Console.Write(" 3-s: {0:f2} %", (float)(Program.localDetourSpanners * 100.0 / s.popSize));
                        Console.Write(" avg: {0:f0}", pop.GetAverage());
                        Console.Write(" med: {0:f0}", sorted[s.popSize / 2].GetFitnessValue());
                        Console.WriteLine();
                    }

                    logger.Log(pop, sorted, i);

                    for (int j = 0; j < sorted.Count; j++)
                    {
                        //Console.WriteLine(sorted[j].ToString());
                        if (j < s.popSize * s.eliteSize)
                        {
                            sorted[j].elite = true;
                        }
                        else
                        {
                            sorted[j].elite = false;
                        }
                    }
                }
                if (!Settings.parallel)
                {
                    Console.WriteLine();
                }
                Individual bestInd;

                //Console.ReadLine();

                for (int j = 0; j < pop.GetPopulationSize(); j++)
                {
                    if ((pop.GetSortedIndividuals()[j]).Is_3_Spanner(false) == 1)
                    {
                        bestInd = pop.GetSortedIndividuals()[j];
                        logger.Log(bestInd);
                        return(bestInd);
                    }
                }
                bestInd = pop.GetSortedIndividuals()[0];
                logger.Log(bestInd);
                return(bestInd);
            }
            catch (Exception e)
            {
                Console.WriteLine(e.StackTrace);
            }
            return(null);
        }
Exemple #6
0
        /// <summary>
        /// Main method
        /// </summary>
        /// <param name="args"></param>
        static void Main(string[] args)
        {
            // initialize settings, tools and the hypoercube graph
            Settings s = Settings.GetInstance();
            Tools    t = Tools.GetInstance(s.cubeDimension);

            graph = GraphInfo.GetInstance(s.cubeDimension);

            /////////////////////////////////
            //                             //
            //      Run the algorithm      //
            //                             //
            /////////////////////////////////

            // information output
            Console.WriteLine("Dimension: " + s.cubeDimension);
            Console.WriteLine();

            List <Tuple <Individual, int> > bestInds = new List <Tuple <Individual, int> >();

            // initialize the array of runs
            Run[] runs = new Run[s.repeats];
            for (int i = 0; i < s.repeats; i++)
            {
                runs[i] = new Run(i);
            }
            var bests = new List <Tuple <Individual, int> >();

            // if parallel run it parallely
            if (Settings.parallel)
            {
                Parallel.ForEach(runs, r =>
                {
                    Individual best = r.RunIt();
                    lock (bestInds)
                    { // lock the list to avoid race conditions
                        bestInds.Add(new Tuple <Individual, int>(best, r.number));
                    }
                });
            }
            // else just run it
            else
            {
                for (int i = 0; i < s.repeats; i++)
                {
                    bests.Add(new Tuple <Individual, int>(runs[i].RunIt(), i));
                }
            }

            // output best individuals
            foreach (var best in bests)
            {
                if (best != null)
                {
                    bestInds.Add(best);
                }
            }

            bestInds.Sort((x, y) => x.Item2.CompareTo(y.Item2));

            Console.WriteLine();
            for (int i = 0; i < bestInds.Count; i++)
            {
                Console.WriteLine("Run " + (i + 1) + ": best objective = " + bestInds[i].Item1.GetObjectiveValue());
                Tools.WriteIndividual(bestInds[i].Item1);
            }
            Console.ReadLine();
        }