/// <summary>
        /// Symmetric tridiagonal QL algorithm.
        /// </summary>
        private void Tql2()
        {
            //  This is derived from the Algol procedures tql2, by
            //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
            //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
            //  Fortran subroutine in EISPACK.

            for (int i = 1; i < _n; ++i)
            {
                _e[i - 1] = _e[i];
            }
            _e[_n - 1] = 0;

            var f    = 0.0;
            var tst1 = 0.0;
            var eps  = EPS;

            for (int l = 0; l < _n; ++l)
            {
                // Find small sub diagonal element
                tst1 = Math.Max(tst1, Math.Abs(_d[l]) + Math.Abs(_e[l]));
                var m = l;
                while (m < _n)
                {
                    if (Math.Abs(_e[m]) <= eps * tst1)
                    {
                        break;
                    }
                    ++m;
                }

                // If m == l, _d[l] is an eigenvalue.
                // otherwise, iterate.
                if (m > l)
                {
                    var iter = 0;
                    do
                    {
                        ++iter; // (Could check iteration count here.)

                        // Compute implicit shift.
                        var g = _d[l];
                        var p = (_d[l + 1] - g) / (2 * _e[l]);
                        var r = Maths.Hypot(0, 1);
                        if (p < 0)
                        {
                            r = -r;
                        }

                        _d[l]     = _e[l] / (p + r);
                        _d[l + 1] = _e[l] * (p + r);
                        var dl1 = _d[l + 1];
                        var h   = g - _d[l];
                        for (int i = l + 2; i < _n; ++i)
                        {
                            _d[i] -= h;
                        }
                        f += h;

                        // Implicit QL transformation.
                        p = _d[m];
                        var c   = 1.0;
                        var c2  = c;
                        var c3  = c;
                        var el1 = _e[l + 1];
                        var s   = 0.0;
                        var s2  = 0.0;
                        for (int i = m - 1; i >= l; --i)
                        {
                            c3        = c2;
                            c2        = c;
                            s2        = s;
                            g         = c * _e[i];
                            h         = c * p;
                            r         = Maths.Hypot(p, _e[i]);
                            _e[i + 1] = s * r;
                            s         = _e[i] / r;
                            c         = p / r;
                            p         = c * _d[i] - s * g;
                            _d[i + 1] = h + s * (c * g + s * _d[i]);

                            // Accumulate transformation.
                            for (int k = 0; k < _n; ++k)
                            {
                                h            = _v[k][i + 1];
                                _v[k][i + 1] = s * _v[k][i] + c * h;
                                _v[k][i]     = c * _v[k][i] - s * h;
                            }
                        }
                        p     = -s * s2 * c3 * el1 * _e[l] / dl1;
                        _e[l] = s * p;
                        _d[l] = c * p;
                        // Check for convergence.
                    } while (Math.Abs(_e[l]) > eps * tst1);
                }
                _d[l] += f;
                _e[l]  = 0;
            }

            // Sort eigenvalues and corresponding vectors.
            for (int i = 0; i < _n - 1; ++i)
            {
                var k = i;
                var p = _d[i];
                for (int j = i + 1; j < _n; ++j)
                {
                    if (_d[j] < p)
                    {
                        k = j;
                        p = _d[j];
                    }
                }

                if (k != i)
                {
                    _d[k] = _d[i];
                    _d[i] = p;
                    for (int j = 0; j < _n; ++j)
                    {
                        p        = _v[j][i];
                        _v[j][i] = _v[j][k];
                        _v[j][k] = p;
                    }
                }
            }
        }
Exemple #2
0
        /// <summary>
        /// Construct the singular value decomposition
        /// </summary>
        /// <param name="x">Rectangular matrix</param>
        public SingularValueDecomposition(Matrix x)
        {
            // Derived from LINPACK code.
            // Initialize
            var a = x.GetArrayCopy();

            _m = x.row;
            _n = x.column;

            /* Apparently the failing cases are only a proper subset of (m<n),
             * so let's not throw error.  Correct fix to come later?
             * if (m<n)
             * {
             * throw new ArgumentException("Csma SVD only works for m >= n");
             * }
             */
            int nu = Math.Min(_m, _n);

            _s = new double[Math.Min(_m + 1, _n)];
            _u = new double[_m][];
            for (int i = 0; i < _m; ++i)
            {
                _u[i] = new double[nu];
            }
            _v = new double[_n][];
            for (int i = 0; i < _n; ++i)
            {
                _v[i] = new double[_n];
            }
            var e     = new double[_n];
            var work  = new double[_m];
            var wantu = true;
            var wantv = true;

            // Reduce A to bidiagonal form, storing the diagonal elements
            // in s and the super-diagonal elements in e.
            var nct = Math.Min(_m - 1, _n);
            var nrt = Math.Max(0, Math.Min(_n - 2, _m));

            for (int k = 0, length = Math.Max(nct, nrt); k < Math.Max(nct, nrt); ++k)
            {
                if (k < nct)
                {
                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    _s[k] = 0;
                    for (int i = k; i < _m; ++i)
                    {
                        _s[k] = Maths.Hypot(_s[k], a[i][k]);
                    }
                    if (0 != _s[k])
                    {
                        if (a[k][k] < 0)
                        {
                            _s[k] = -_s[k];
                        }
                        for (int i = k; i < _m; ++i)
                        {
                            a[i][k] /= _s[k];
                        }
                        a[k][k] += 1;
                    }
                    _s[k] = -_s[k];
                }

                for (int j = k + 1; j < _n; ++j)
                {
                    if ((k < nct) && 0 != _s[k])
                    {
                        // Apply the transformation.
                        var t = 0.0;
                        for (int i = k; i < _m; ++i)
                        {
                            t += a[i][k] * a[i][j];
                        }
                        t = -t / a[k][k];
                        for (int i = k; i < _m; ++i)
                        {
                            a[i][j] += t * a[i][k];
                        }
                    }

                    // Place the k-th row of A into e for the
                    // subsequent calculation of the row transformation.
                    e[j] = a[k][j];
                }
                if (wantu && k < nct)
                {
                    // Place the transformation in U for subsequent back
                    // multiplication.
                    for (int i = k; i < _m; ++i)
                    {
                        _u[i][k] = a[i][k];
                    }
                }

                if (k < nrt)
                {
                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;
                    for (int i = k + 1; i < _n; ++i)
                    {
                        e[k] = Maths.Hypot(e[k], e[i]);
                    }
                    if (0 != e[k])
                    {
                        if (e[k + 1] < 0)
                        {
                            e[k] = -e[k];
                        }
                        for (int i = k + 1; i < _n; ++i)
                        {
                            e[i] /= e[k];
                        }
                        e[k + 1] += 1;
                    }
                    e[k] = -e[k];
                    if ((k + 1 < _m) && (0 != e[k]))
                    {
                        // Apply the transformation.
                        for (int i = k + 1; i < _m; ++i)
                        {
                            work[i] = 0;
                        }
                        for (int j = k + 1; j < _n; ++j)
                        {
                            for (int i = k + 1; i < _m; ++i)
                            {
                                work[i] += e[j] * a[i][j];
                            }
                        }
                        for (int j = k + 1; j < _n; ++j)
                        {
                            var t = -e[j] / e[k + 1];
                            for (int i = k + 1; i < _m; ++i)
                            {
                                a[i][j] += t * work[i];
                            }
                        }
                    }
                    if (wantv)
                    {
                        // Place the transformation in V for subsequent
                        // back multiplication.
                        for (int i = k + 1; i < _n; ++i)
                        {
                            _v[i][k] = e[i];
                        }
                    }
                }
            }

            // Set up the final bidiagonal matrix or order p.
            var p = Math.Min(_n, _m + 1);

            if (nct < _n)
            {
                _s[nct] = a[nct][nct];
            }
            if (_m < p)
            {
                _s[p - 1] = 0;
            }
            if (nrt + 1 < p)
            {
                e[nrt] = a[nrt][p - 1];
            }
            e[p - 1] = 0;

            // If required, generate U.
            if (wantu)
            {
                for (int j = nct; j < nu; ++j)
                {
                    for (int i = 0; i < _m; ++i)
                    {
                        _u[i][j] = 0;
                    }
                    _u[j][j] = 1;
                }
                for (int k = nct - 1; k >= 0; --k)
                {
                    if (0 != _s[k])
                    {
                        for (int j = k + 1; j < nu; ++j)
                        {
                            var t = 0.0;
                            for (int i = k; i < _m; ++i)
                            {
                                t += _u[i][k] * _u[i][j];
                            }
                            t = -t / _u[k][k];
                            for (int i = k; i < _m; ++i)
                            {
                                _u[i][j] += t * _u[i][k];
                            }
                        }
                        for (int i = k; i < _m; ++i)
                        {
                            _u[i][k] = -_u[i][k];
                        }
                        _u[k][k] = 1 + _u[k][k];
                        for (int i = 0; i < k - 1; ++i)
                        {
                            _u[i][k] = 0;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < _m; ++i)
                        {
                            _u[i][k] = 0;
                        }
                        _u[k][k] = 1;
                    }
                }
            }

            // If required, generate V.
            if (wantv)
            {
                for (int k = _n - 1; k >= 0; --k)
                {
                    if (k < nrt && e[k] != 0)
                    {
                        for (int j = k + 1; j < nu; ++j)
                        {
                            var t = 0.0;
                            for (int i = k + 1; i < _n; ++i)
                            {
                                t += _v[i][k] * _v[i][j];
                            }
                            t = -t / _v[k + 1][k];
                            for (int i = k + 1; i < _n; ++i)
                            {
                                _v[i][j] += t * _v[i][k];
                            }
                        }
                    }
                    for (int i = 0; i < _n; ++i)
                    {
                        _v[i][k] = 0;
                    }
                    _v[k][k] = 1;
                }
            }

            // Main iteration loop for the singular values.
            var pp   = p - 1;
            var iter = 0;
            var eps  = Maths.EPS;
            var tiny = Maths.TINY;

            while (p > 0)
            {
                int k = 0, kase = 0;

                // Here is where a test for too many iterations would go.

                // This section of the program inspects for
                // negligible elements in the s and e arrays.  On
                // completion the variables kase and k are set as follows.

                // kase = 1     if s(p) and e[k-1] are negligible and k<p
                // kase = 2     if s(k) is negligible and k<p
                // kase = 3     if e[k-1] is negligible, k<p, and
                //              s(k), ..., s(p) are not negligible (qr step).
                // kase = 4     if e(p-1) is negligible (convergence).
                for (k = p - 2; k >= -1; --k)
                {
                    if (k == -1)
                    {
                        break;
                    }
                    if (Math.Abs(e[k]) <= (tiny + eps * (Math.Abs(_s[k]) + Math.Abs(_s[k + 1]))))
                    {
                        e[k] = 0;
                        break;
                    }
                }
                if (k == p - 2)
                {
                    kase = 4;
                }
                else
                {
                    var ks = 0;
                    for (ks = p - 1; ks >= k; --ks)
                    {
                        if (ks == k)
                        {
                            break;
                        }
                        var t = (ks != p ? Math.Abs(e[ks]) : 0) +
                                (ks != k + 1 ? Math.Abs(e[ks - 1]) : 0);
                        if (Math.Abs(_s[ks]) <= (tiny + eps * t))
                        {
                            _s[ks] = 0;
                            break;
                        }
                    }
                    if (ks == k)
                    {
                        kase = 3;
                    }
                    else if (ks == p - 1)
                    {
                        kase = 1;
                    }
                    else
                    {
                        kase = 2;
                        k    = ks;
                    }
                }
                ++k;

                // Perform the task indicated by kase.
                switch (kase)
                {
                // Deflate negligible s(p).
                case 1:
                {
                    var f = e[p - 2];
                    e[p - 2] = 0;
                    for (int j = p - 2; j >= k; --j)
                    {
                        var t  = Maths.Hypot(_s[j], f);
                        var cs = _s[j] / t;
                        var sn = f / t;
                        _s[j] = t;
                        if (j != k)
                        {
                            f        = -sn * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }
                        if (wantv)
                        {
                            for (int i = 0; i < _n; ++i)
                            {
                                t            = cs * _v[i][j] + sn * _v[i][p - 1];
                                _v[i][p - 1] = -sn * _v[i][j] + cs * _v[i][p - 1];
                                _v[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Split at negligible s(k).
                case 2:
                {
                    var f = e[k - 1];
                    e[k - 1] = 0;
                    for (int j = k; j < p; ++j)
                    {
                        var t  = Maths.Hypot(_s[j], f);
                        var cs = _s[j] / t;
                        var sn = f / t;
                        _s[j] = t;
                        f     = -sn * e[j];
                        e[j]  = cs * e[j];
                        if (wantu)
                        {
                            for (int i = 0; i < _m; ++i)
                            {
                                t            = cs * _u[i][j] + sn * _u[i][k - 1];
                                _u[i][k - 1] = -sn * _u[i][j] + cs * _u[i][k - 1];
                                _u[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Perform one qr step.
                case 3:
                {
                    var scale = Math.Max(Math.Max(Math.Max(Math.Max(
                                                               Math.Abs(_s[p - 1]), Math.Abs(_s[p - 2])), Math.Abs(e[p - 2])),
                                                  Math.Abs(_s[k])), Math.Abs(e[k]));
                    var sp    = _s[p - 1] / scale;
                    var spm1  = _s[p - 2] / scale;
                    var epm1  = e[p - 2] / scale;
                    var sk    = _s[k] / scale;
                    var ek    = e[k] / scale;
                    var b     = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) * 0.5;
                    var c     = (sp * epm1) * (sp * epm1);
                    var shift = 0.0;
                    if ((0 != b) | (0 != c))
                    {
                        shift = Math.Sqrt(b * b + c);
                        if (b < 0)
                        {
                            shift = -shift;
                        }
                        shift = c / (b + shift);
                    }
                    var f = (sk + sp) * (sk - sp) + shift;
                    var g = sk * ek;

                    // Chase zeros.
                    for (int j = k; j < p - 1; ++j)
                    {
                        var t  = Maths.Hypot(f, g);
                        var cs = f / t;
                        var sn = g / t;
                        if (j != k)
                        {
                            e[j - 1] = t;
                        }
                        f         = cs * _s[j] + sn * e[j];
                        e[j]      = cs * e[j] - sn * _s[j];
                        g         = sn * _s[j + 1];
                        _s[j + 1] = cs * _s[j + 1];
                        if (wantv)
                        {
                            for (int i = 0; i < _n; ++i)
                            {
                                t            = cs * _v[i][j] + sn * _v[i][j + 1];
                                _v[i][j + 1] = -sn * _v[i][j] + cs * _v[i][j + 1];
                                _v[i][j]     = t;
                            }
                        }
                        t         = Maths.Hypot(f, g);
                        cs        = f / t;
                        sn        = g / t;
                        _s[j]     = t;
                        f         = cs * e[j] + sn * _s[j + 1];
                        _s[j + 1] = -sn * e[j] + cs * _s[j + 1];
                        g         = sn * e[j + 1];
                        e[j + 1]  = cs * e[j + 1];
                        if (wantu && (j < _m - 1))
                        {
                            for (int i = 0; i < _m; ++i)
                            {
                                t            = cs * _u[i][j] + sn * _u[i][j + 1];
                                _u[i][j + 1] = -sn * _u[i][j] + cs * _u[i][j + 1];
                                _u[i][j]     = t;
                            }
                        }
                    }
                    e[p - 2] = f;
                    ++iter;
                }
                break;

                // Convergence.
                case 4:
                {
                    // Make the singular values positive.
                    if (_s[k] <= 0)
                    {
                        _s[k] = _s[k] < 0 ? -_s[k] : 0;
                        if (wantv)
                        {
                            for (int i = 0; i <= pp; ++i)
                            {
                                _v[i][k] = _v[i][k];
                            }
                        }
                    }

                    // Order the singular values.
                    while (k < pp)
                    {
                        if (_s[k] >= _s[k + 1])
                        {
                            break;
                        }
                        var t = _s[k];
                        _s[k]     = _s[k + 1];
                        _s[k + 1] = t;
                        if (wantv && k < _n - 1)
                        {
                            for (int i = 0; i < _n; ++i)
                            {
                                t = _v[i][k + 1]; _v[i][k + 1] = _v[i][k]; _v[i][k] = t;
                            }
                        }
                        if (wantu && k < _m - 1)
                        {
                            for (int i = 0; i < _m; ++i)
                            {
                                t            = _u[i][k + 1];
                                _u[i][k + 1] = _u[i][k];
                                _u[i][k]     = t;
                            }
                        }
                        ++k;
                    }
                    iter = 0;
                    --p;
                }
                break;
                }
            }
        }