public static Complex[,] CalcPaddedFourierConvolution(double[,] psf, int yPadding, int xPadding)
            {
                var psfPadded = Residuals.Pad(psf, yPadding, xPadding);

                FFT.Shift(psfPadded);
                var PSFPadded = FFT.Forward(psfPadded, 1.0);

                return(PSFPadded);
            }
Exemple #2
0
            /// <summary>
            /// Prepares the CONVOLUTION kernel in Fourier space. It pads PSF and applies the FFT. (multiplication in fourier space == convolution, multiplication with inverted kernel in fourier space == correlation)
            /// its padded, otherwise the FFT would calculate the circular convolution which is physically implausible
            /// </summary>
            /// <param name="psf"></param>
            /// <param name="padding"></param>
            /// <returns></returns>
            public static Complex[,] CalcPaddedFourierConvolution(float[,] psf, Rectangle padding)
            {
                var psfPadded = Pad(psf, padding.YExtent(), padding.XExtent());

                FFT.Shift(psfPadded);
                var PSFPadded = FFT.Forward(psfPadded, 1.0);

                return(PSFPadded);
            }
        public PaddedConvolver(Rectangle totalImageSize, float[,] kernel)
        {
            this.kernelSize = new Rectangle(0, 0, kernel.GetLength(0), kernel.GetLength(1));
            this.kernel     = new Complex[totalImageSize.YExtent() + kernel.GetLength(0), totalImageSize.XExtent() + kernel.GetLength(1)];
            fft             = new FFT(this.kernel.GetLength(0), this.kernel.GetLength(1));

            InsertKernel(totalImageSize, kernel);
            FFT.Shift(fft.ImageBuffer);
            fft.Forward();

            Parallel.For(0, this.kernel.GetLength(0), (i) =>
            {
                for (int j = 0; j < this.kernel.GetLength(1); j++)
                {
                    this.kernel[i, j] = fft.FourierBuffer[i, j];
                }
            });
        }
            public static Complex[,] CalculateFourierCorrelation(double[,] psf, int yPadding, int xPadding)
            {
                var psfPadded = new double[yPadding + psf.GetLength(0), xPadding + psf.GetLength(1)];
                var yPsfHalf  = yPadding / 2;
                var xPsfHalf  = xPadding / 2;

                for (int y = 0; y < psf.GetLength(0); y++)
                {
                    for (int x = 0; x < psf.GetLength(1); x++)
                    {
                        if (y + +yPsfHalf + 1 < psfPadded.GetLength(0) & x + xPsfHalf + 1 < psfPadded.GetLength(1))
                        {
                            psfPadded[y + yPsfHalf + 1, x + xPsfHalf + 1] = psf[psf.GetLength(0) - y - 1, psf.GetLength(1) - x - 1];
                        }
                    }
                }
                FFT.Shift(psfPadded);
                var PSFPadded = FFT.Forward(psfPadded, 1.0);

                return(PSFPadded);
            }
Exemple #5
0
        public static void DebugdWStack()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits");
            var    flags        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length);
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            for (int i = 1; i < 8; i++)
            {
                var uvw0          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits");
                var flags0        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length);
                var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm);
                uvw          = FitsIO.Stitch(uvw, uvw0);
                flags        = FitsIO.Stitch(flags, flags0);
                visibilities = FitsIO.Stitch(visibilities, visibilities0);
            }

            var maxW = 0.0;

            for (int i = 0; i < uvw.GetLength(0); i++)
            {
                for (int j = 0; j < uvw.GetLength(1); j++)
                {
                    maxW = Math.Max(maxW, Math.Abs(uvw[i, j, 2]));
                }
            }
            maxW = Partitioner.MetersToLambda(maxW, frequencies[frequencies.Length - 1]);

            var visCount2 = 0;

            for (int i = 0; i < flags.GetLength(0); i++)
            {
                for (int j = 0; j < flags.GetLength(1); j++)
                {
                    for (int k = 0; k < flags.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            var    visibilitiesCount = visCount2;
            int    gridSize          = 4096;
            int    subgridsize       = 16;
            int    kernelSize        = 8;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.6 / 3600.0 * PI / 180.0;
            int    wLayerCount       = 32;
            double wStep             = maxW / (wLayerCount);
            var    c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep);
            var    c2       = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0);
            var    metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfVis = new Complex[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length];

            for (int i = 0; i < visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < visibilities.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            var psfGrid = IDG.GridW(c, metadata, psfVis, uvw, frequencies);
            var psf     = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            FitsIO.Write(psf, "psfWStack.fits");

            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.4f * fastCD.MaxLipschitz;
            var alpha          = 0.1f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            for (int cycle = 0; cycle < 8; cycle++)
            {
                var dirtyGrid = IDG.GridW(c, metadata, residualVis, uvw, frequencies);
                var dirty     = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirty);

                FitsIO.Write(dirty, "dirty_" + cycle + ".fits");
                bMapCalculator.ConvolveInPlace(dirty);
                FitsIO.Write(dirty, "bMap_" + cycle + ".fits");
                var result = fastCD.Deconvolve(xImage, dirty, lambda, alpha, 10000, 1e-4f);

                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");

                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis  = IDG.DeGridW(c, metadata, xGrid, uvw, frequencies);
                var modelGrid = IDG.GridW(c, metadata, modelVis, uvw, frequencies);
                var model     = FFT.WStackIFFTFloat(modelGrid, c.VisibilitiesCount);
                FFT.Shift(model);
                FitsIO.Write(model, "model_" + cycle + ".fits");
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
            }
        }
Exemple #6
0
        public static void DebugILGPU()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.Backward(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            var psfCutDouble = CutImg(psf);
            var psfCut       = ToFloatImage(psfCutDouble);

            FitsIO.Write(psfCut, "psfCut.fits");


            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var imageSection   = new Rectangle(0, 128, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);

            fastCD.ResetLipschitzMap(ToFloatImage(psf));
            var gpuCD  = new GPUSerialCD(totalSize, psfCut, 100);
            var lambda = 0.5f * fastCD.MaxLipschitz;
            var alpha  = 0.8f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                bMapCalculator.ConvolveInPlace(dirtyImage);
                FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);
                var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);

                if (result.Converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");
                FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();

                var hello = FFT.Forward(xImage, 1.0);
                hello = Common.Fourier2D.Multiply(hello, psfGrid);
                var hImg = FFT.Backward(hello, (double)(128 * 128));
                //FFT.Shift(hImg);
                FitsIO.Write(hImg, "modelDirty_FFT.fits");

                var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies);
                FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits");
            }
        }
Exemple #7
0
        public static void DebugSimulatedApprox()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var psfCut = PSF.Cut(psf);

            FitsIO.Write(psfCut, "psfCut.fits");

            var random         = new Random(123);
            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);
            //fastCD.ResetAMap(psf);
            var lambda  = 0.5f * fastCD.MaxLipschitz;
            var alpha   = 0.8f;
            var approx  = new ApproxParallel();
            var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true);

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt"));

            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha);
                //FitsIO.Write(xImage, "xIsta.fits");
                //FitsIO.Write(dirtyImage, "dirtyFista.fits");
                //bMapCalculator.ConvolveInPlace(dirtyImage);
                //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f);
                //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1);
                //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500);
                //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0);

                approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f);


                if (data.converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();
            }


            var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
            var dirtyCheck     = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount);

            FFT.Shift(dirtyCheck);

            var l2Penalty      = Residuals.CalcPenalty(ToFloatImage(dirtyCheck));
            var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha);
            var sum            = l2Penalty + elasticPenalty;

            data.writer.Close();
        }
Exemple #8
0
        public static void MeerKATFull()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits");
            var    flags        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length);
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            for (int i = 1; i < 8; i++)
            {
                var uvw0          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits");
                var flags0        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length);
                var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm);
                uvw          = FitsIO.Stitch(uvw, uvw0);
                flags        = FitsIO.Stitch(flags, flags0);
                visibilities = FitsIO.Stitch(visibilities, visibilities0);
            }

            /*
             * var frequencies = FitsIO.ReadFrequencies(@"freq.fits");
             * var uvw = FitsIO.ReadUVW("uvw0.fits");
             * var flags = FitsIO.ReadFlags("flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length);
             * double norm = 2.0;
             * var visibilities = FitsIO.ReadVisibilities("vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);
             */
            var visCount2 = 0;

            for (int i = 0; i < flags.GetLength(0); i++)
            {
                for (int j = 0; j < flags.GetLength(1); j++)
                {
                    for (int k = 0; k < flags.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            var visibilitiesCount = visCount2;

            int gridSize    = 1024;
            int subgridsize = 16;
            int kernelSize  = 4;
            //cell = image / grid
            int    max_nr_timesteps = 512;
            double scaleArcSec      = 2.5 / 3600.0 * PI / 180.0;

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();

            var c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)scaleArcSec, 1, 0.0f);
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);
            var psf      = IDG.CalculatePSF(c, metadata, uvw, flags, frequencies);

            FitsIO.Write(psf, "psf.fits");
            var psfCut = CutImg(psf, 2);

            FitsIO.Write(psfCut, "psfCut.fits");
            var maxSidelobe   = CommonDeprecated.PSF.CalcMaxSidelobe(psf);
            var psfCorrelated = CommonDeprecated.PSF.CalculateFourierCorrelation(psfCut, c.GridSize, c.GridSize);

            var xImage      = new double[gridSize, gridSize];
            var residualVis = visibilities;
            var maxCycle    = 2;

            for (int cycle = 0; cycle < maxCycle; cycle++)
            {
                watchForward.Start();
                var dirtyImage = IDG.ToImage(c, metadata, residualVis, uvw, frequencies);
                watchForward.Stop();
                FitsIO.Write(dirtyImage, "dirty" + cycle + ".fits");

                watchDeconv.Start();
                var sideLobe = maxSidelobe * GetMax(dirtyImage);
                Console.WriteLine("sideLobeLevel: " + sideLobe);
                var b             = CommonDeprecated.Residuals.CalculateBMap(dirtyImage, psfCorrelated, psfCut.GetLength(0), psfCut.GetLength(1));
                var lambda        = 0.8;
                var alpha         = 0.05;
                var currentLambda = Math.Max(1.0 / alpha * sideLobe, lambda);
                var converged     = SerialCDReference.DeconvolvePath(xImage, b, psfCut, currentLambda, 4.0, alpha, 5, 1000, 2e-5);
                //var converged = GreedyCD2.Deconvolve(xImage, b, psfCut, currentLambda, alpha, 5000);
                if (converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!! with lambda " + currentLambda + "------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged with lambda " + currentLambda + "----------------------");
                }

                watchDeconv.Stop();
                FitsIO.Write(xImage, "xImage_" + cycle + ".fits");

                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();
            }
            watchBackwards.Stop();
            watchTotal.Stop();

            var timetable = "total elapsed: " + watchTotal.Elapsed;

            timetable += "\n" + "idg forward elapsed: " + watchForward.Elapsed;
            timetable += "\n" + "idg backwards elapsed: " + watchBackwards.Elapsed;
            timetable += "\n" + "devonvolution: " + watchDeconv.Elapsed;
            File.WriteAllText("watches_single.txt", timetable);
        }
Exemple #9
0
        public static void DebugSimulatedMixed()
        {
            var    frequencies       = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\freq.fits");
            var    uvw               = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\uvw.fits");
            var    flags             = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm              = 2.0;
            var    visibilities      = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);
            var    visibilitiesCount = visibilities.Length;

            int gridSize    = 1024;
            int subgridsize = 16;
            int kernelSize  = 4;
            //cell = image / grid
            int    max_nr_timesteps = 512;
            double scaleArcSec      = 0.5 / 3600.0 * PI / 180.0;

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();

            var c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)scaleArcSec, 1, 0.0f);
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);
            var psf      = IDG.CalculatePSF(c, metadata, uvw, flags, frequencies);

            FitsIO.Write(psf, "psf.fits");
            var psfCut = CutImg(psf, 2);

            FitsIO.Write(psfCut, "psfCut.fits");
            var maxSidelobe = CommonDeprecated.PSF.CalcMaxSidelobe(psf);

            var xImage      = new double[gridSize, gridSize];
            var residualVis = visibilities;
            var maxCycle    = 10;

            for (int cycle = 0; cycle < maxCycle; cycle++)
            {
                watchForward.Start();
                var dirtyImage = IDG.ToImage(c, metadata, residualVis, uvw, frequencies);
                watchForward.Stop();
                FitsIO.Write(dirtyImage, "dirty" + cycle + ".fits");

                watchDeconv.Start();
                var sideLobe = maxSidelobe * GetMax(dirtyImage);
                Console.WriteLine("sideLobeLevel: " + sideLobe);
                var PsfCorrelation = CommonDeprecated.PSF.CalculateFourierCorrelation(psfCut, c.GridSize, c.GridSize);
                var b             = CommonDeprecated.Residuals.CalculateBMap(dirtyImage, PsfCorrelation, psfCut.GetLength(0), psfCut.GetLength(1));
                var lambda        = 100.0;
                var alpha         = 0.95;
                var currentLambda = Math.Max(1.0 / alpha * sideLobe, lambda);
                var converged     = SerialCDReference.DeconvolvePath(xImage, b, psfCut, currentLambda, 5.0, alpha, 5, 6000, 1e-3);
                //var converged = GreedyCD2.Deconvolve(xImage, b, psfCut, currentLambda, alpha, 5000);
                if (converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!! with lambda " + currentLambda + "------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged with lambda " + currentLambda + "----------------------");
                }

                watchDeconv.Stop();
                FitsIO.Write(xImage, "xImage_" + cycle + ".fits");

                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();
            }
            watchBackwards.Stop();
            watchTotal.Stop();

            var timetable = "total elapsed: " + watchTotal.Elapsed;

            timetable += "\n" + "idg forward elapsed: " + watchForward.Elapsed;
            timetable += "\n" + "idg backwards elapsed: " + watchBackwards.Elapsed;
            timetable += "\n" + "devonvolution: " + watchDeconv.Elapsed;
            File.WriteAllText("watches_single.txt", timetable);
        }