/// <summary> /// https://en.wikipedia.org/wiki/Artificial_neuron /// input1*weight1 /// input1*weight2 /// bias(+1*weight) /// </summary> /// <param name="n_inputs"></param> /// <param name="activation"></param> public NeuronNode(int n_inputs, string activation) { this.n_inputs = n_inputs; this.multiplyNodes = new List <MultiplyNode>(); //for inputs and weights this.sumNode = new SumNode(); //for sum of inputs*weights this.previous_deltas = new List <double>(); // values of las iteration this.gradients = new List <List <double> >(); //local gradients MultiplyNode mulNode; //init inputs //collect inputs and corresponding weights for (int i = 0; i < this.n_inputs; i++) { mulNode = new MultiplyNode(); double b = grnd.NextGaussian(0.3, 0.5); mulNode.x = new List <double>() { 1.0, b }; this.multiplyNodes.Add(mulNode); previous_deltas.Add(0.0); } //init bias node and weight mulNode = new MultiplyNode(); double m = grnd.NextGaussian(0.0, 0.01); mulNode.x = new List <double>() { 1.0, m }; this.multiplyNodes.Add(mulNode); previous_deltas.Add(0.0); if (activation.Equals("sigmoid")) { this.activation_node = new SigmoidNode(); } if (activation.Equals("relu")) { this.activation_node2 = new RelUNode(); } else { throw new NotImplementedException("Activation function is not supported"); } this.activation = activation; }
private static GaussianRandom grnd = new GaussianRandom(); //gausova raspodela za random vrednosti /// <summary> /// https://en.wikipedia.org/wiki/Artificial_neuron /// ulaz1*tezina1 /// ulaz1*tezina2 /// bias(+1*tezina) /// sve se sabere /// provuce se kroz aktivacionu funkciju /// </summary> /// <param name="n_inputs"></param> /// <param name="activation"> String naziv aktivacione funkcije </param> public NeuronNode(int n_inputs, string activation) { this.n_inputs = n_inputs; this.multiplyNodes = new List <MultiplyNode>(); //for inputs and weights this.sumNode = new SumNode(); //for sum of inputs*weights this.previous_deltas = new List <double>(); //vrednost delti u prosloj iteraciji this.gradients = new List <List <double> >(); //lokalni gradijenti MultiplyNode mulNode; //init inputs //collect inputs and corresponding weights for (int i = 0; i < this.n_inputs; i++) { mulNode = new MultiplyNode(); double b = grnd.NextGaussian(0.3, 0.5); mulNode.x = new List <double>() { 1.0, b }; this.multiplyNodes.Add(mulNode); previous_deltas.Add(0.0); } //init bias node and weight mulNode = new MultiplyNode(); double m = grnd.NextGaussian(0.0, 0.01); mulNode.x = new List <double>() { 1.0, m }; this.multiplyNodes.Add(mulNode); previous_deltas.Add(0.0); // TODO: Ovde dodajem ako dodajem neku drugu aktivacionu funkciju /* * if else(activation.Equals("TangesHiperbolic")..... */ if (activation.Equals("sigmoid")) { this.activation_node = new SigmoidNode(); } else { throw new NotImplementedException("Activation function is not supported"); } }
/// <summary> /// https://en.wikipedia.org/wiki/Artificial_neuron /// ulaz1*tezina1 /// ulaz1*tezina2 /// bias(+1*tezina) /// sve se sabere /// provuce se kroz aktivacionu funkciju /// </summary> /// <param name="n_inputs"></param> /// <param name="activation"></param> public NeuronNode(int n_inputs, string activation) { this.n_inputs = n_inputs; this.multiplyNodes = new List <MultiplyNode>(); //for inputs and weights this.sumNode = new SumNode(); //for sum of inputs*weights this.previous_deltas = new List <double>(); //vrednost delti u prosloj iteraciji this.gradients = new List <List <double> >(); //lokalni gradijenti MultiplyNode mulNode; //init inputs //collect inputs and corresponding weights for (int i = 0; i < this.n_inputs; i++) { mulNode = new MultiplyNode(); mulNode.x = new List <double>() { 1.0, (rnd.NextDouble() - 0.5) / 50.0 }; //izemdju -0.1 i 0.1 this.multiplyNodes.Add(mulNode); previous_deltas.Add(0.0); } //init bias node and weight mulNode = new MultiplyNode(); mulNode.x = new List <double>() { 1.0, (rnd.NextDouble() - 0.5 / 50.0) }; // -0.01 do 0.01 this.multiplyNodes.Add(mulNode); previous_deltas.Add(0.0); if (activation.Equals("sigmoid")) { this.activation_node = new SigmoidNode(); } else { throw new NotImplementedException("Activation function is not supported"); } }