Exemple #1
0
        /// <summary>
        /// The Inverse of the matrix copied into mInv.
        /// Returns false if the matrix has no inverse.
        /// A matrix multipled by its inverse is the idenity.
        /// </summary>
        public bool TryInverse(out Matrix3x3d mInv)
        {
            // Invert a 3x3 using cofactors.  This is about 8 times faster than
            // the Numerical Recipes code which uses Gaussian elimination.
            mInv.m00 = m11 * m22 - m12 * m21;
            mInv.m01 = m02 * m21 - m01 * m22;
            mInv.m02 = m01 * m12 - m02 * m11;
            mInv.m10 = m12 * m20 - m10 * m22;
            mInv.m11 = m00 * m22 - m02 * m20;
            mInv.m12 = m02 * m10 - m00 * m12;
            mInv.m20 = m10 * m21 - m11 * m20;
            mInv.m21 = m01 * m20 - m00 * m21;
            mInv.m22 = m00 * m11 - m01 * m10;

            double fDet = m00 * mInv.m00 + m01 * mInv.m10 + m02 * mInv.m20;

            if (Math.Abs(fDet) <= 1e-09)
            {
                mInv = Identity;
                return(false);
            }

            double fInvDet = 1.0f / fDet;

            mInv.m00 *= fInvDet; mInv.m01 *= fInvDet; mInv.m02 *= fInvDet;
            mInv.m10 *= fInvDet; mInv.m11 *= fInvDet; mInv.m12 *= fInvDet;
            mInv.m20 *= fInvDet; mInv.m21 *= fInvDet; mInv.m22 *= fInvDet;

            return(true);
        }
        /// <summary>
        /// Convert to a 3 dimension matrix.
        /// </summary>
        public Matrix3x3d ToMatrix3x3d()
        {
            Matrix3x3d mat = new Matrix3x3d();

            mat.m00 = m00; mat.m01 = m01; mat.m02 = m02;
            mat.m10 = m10; mat.m11 = m11; mat.m12 = m12;
            mat.m20 = m20; mat.m21 = m21; mat.m22 = m22;

            return(mat);
        }
Exemple #3
0
        /// <summary>
        /// Are these matrices equal.
        /// </summary>
        public override bool Equals(object obj)
        {
            if (!(obj is Matrix3x3d))
            {
                return(false);
            }

            Matrix3x3d mat = (Matrix3x3d)obj;

            return(this == mat);
        }
Exemple #4
0
        /// <summary>
        /// Subtract two matrices.
        /// </summary>
        public static Matrix3x3d operator -(Matrix3x3d m1, Matrix3x3d m2)
        {
            Matrix3x3d kSum = new Matrix3x3d();

            kSum.m00 = m1.m00 - m2.m00;
            kSum.m01 = m1.m01 - m2.m01;
            kSum.m02 = m1.m02 - m2.m02;

            kSum.m10 = m1.m10 - m2.m10;
            kSum.m11 = m1.m11 - m2.m11;
            kSum.m12 = m1.m12 - m2.m12;

            kSum.m20 = m1.m20 - m2.m20;
            kSum.m21 = m1.m21 - m2.m21;
            kSum.m22 = m1.m22 - m2.m22;
            return(kSum);
        }
Exemple #5
0
        /// <summary>
        /// Multiply a matrix by a scalar.
        /// </summary>
        public static Matrix3x3d operator *(Matrix3x3d m1, double s)
        {
            Matrix3x3d kProd = new Matrix3x3d();

            kProd.m00 = m1.m00 * s;
            kProd.m01 = m1.m01 * s;
            kProd.m02 = m1.m02 * s;

            kProd.m10 = m1.m10 * s;
            kProd.m11 = m1.m11 * s;
            kProd.m12 = m1.m12 * s;

            kProd.m20 = m1.m20 * s;
            kProd.m21 = m1.m21 * s;
            kProd.m22 = m1.m22 * s;

            return(kProd);
        }
Exemple #6
0
        /// <summary>
        /// Multiply two matrices.
        /// </summary>
        public static Matrix3x3d operator *(Matrix3x3d m1, Matrix3x3d m2)
        {
            Matrix3x3d kProd = new Matrix3x3d();

            kProd.m00 = m1.m00 * m2.m00 + m1.m01 * m2.m10 + m1.m02 * m2.m20;
            kProd.m01 = m1.m00 * m2.m01 + m1.m01 * m2.m11 + m1.m02 * m2.m21;
            kProd.m02 = m1.m00 * m2.m02 + m1.m01 * m2.m12 + m1.m02 * m2.m22;

            kProd.m10 = m1.m10 * m2.m00 + m1.m11 * m2.m10 + m1.m12 * m2.m20;
            kProd.m11 = m1.m10 * m2.m01 + m1.m11 * m2.m11 + m1.m12 * m2.m21;
            kProd.m12 = m1.m10 * m2.m02 + m1.m11 * m2.m12 + m1.m12 * m2.m22;

            kProd.m20 = m1.m20 * m2.m00 + m1.m21 * m2.m10 + m1.m22 * m2.m20;
            kProd.m21 = m1.m20 * m2.m01 + m1.m21 * m2.m11 + m1.m22 * m2.m21;
            kProd.m22 = m1.m20 * m2.m02 + m1.m21 * m2.m12 + m1.m22 * m2.m22;

            return(kProd);
        }
Exemple #7
0
        /// <summary>
        /// Add two matrices.
        /// </summary>
        public static Matrix3x3d operator +(Matrix3x3d m1, Matrix3x3d m2)
        {
            Matrix3x3d kSum = new Matrix3x3d();

            kSum.m00 = m1.m00 + m2.m00;
            kSum.m01 = m1.m01 + m2.m01;
            kSum.m02 = m1.m02 + m2.m02;

            kSum.m10 = m1.m10 + m2.m10;
            kSum.m11 = m1.m11 + m2.m11;
            kSum.m12 = m1.m12 + m2.m12;

            kSum.m20 = m1.m20 + m2.m20;
            kSum.m21 = m1.m21 + m2.m21;
            kSum.m22 = m1.m22 + m2.m22;

            return(kSum);
        }
Exemple #8
0
        /// <summary>
        /// Rotates A through phi in pq-plane to set A(p,q) = 0
        /// Rotation stored in R whose columns are eigenvectors of A
        /// </summary>
        public static void JacobiRotate(ref Matrix3x3d A, ref Matrix3x3d R, int p, int q)
        {
            if (A[p, q] == 0.0f)
            {
                return;
            }

            double d = (A[p, p] - A[q, q]) / (2.0f * A[p, q]);
            double t = 1.0 / (Math.Abs(d) + Math.Sqrt(d * d + 1.0));

            if (d < 0.0f)
            {
                t = -t;
            }
            double c = 1.0 / Math.Sqrt(t * t + 1);
            double s = t * c;

            A[p, p] += t * A[p, q];
            A[q, q] -= t * A[p, q];
            A[p, q]  = A[q, p] = 0.0f;

            // transform A
            int k;

            for (k = 0; k < 3; k++)
            {
                if (k != p && k != q)
                {
                    double Akp = c * A[k, p] + s * A[k, q];
                    double Akq = -s * A[k, p] + c * A[k, q];
                    A[k, p] = A[p, k] = Akp;
                    A[k, q] = A[q, k] = Akq;
                }
            }

            // store rotation in R
            for (k = 0; k < 3; k++)
            {
                double Rkp = c * R[k, p] + s * R[k, q];
                double Rkq = -s * R[k, p] + c * R[k, q];
                R[k, p] = Rkp;
                R[k, q] = Rkq;
            }
        }
Exemple #9
0
        /// <summary>
        /// Are these matrices equal.
        /// </summary>
        public bool EqualsWithError(Matrix3x3d m, double eps)
        {
            if (Math.Abs(m00 - m.m00) > eps)
            {
                return(false);
            }
            if (Math.Abs(m10 - m.m10) > eps)
            {
                return(false);
            }
            if (Math.Abs(m20 - m.m20) > eps)
            {
                return(false);
            }

            if (Math.Abs(m01 - m.m01) > eps)
            {
                return(false);
            }
            if (Math.Abs(m11 - m.m11) > eps)
            {
                return(false);
            }
            if (Math.Abs(m21 - m.m21) > eps)
            {
                return(false);
            }

            if (Math.Abs(m02 - m.m02) > eps)
            {
                return(false);
            }
            if (Math.Abs(m12 - m.m12) > eps)
            {
                return(false);
            }
            if (Math.Abs(m22 - m.m22) > eps)
            {
                return(false);
            }

            return(true);
        }
Exemple #10
0
        /// <summary>
        /// Return the inf norm of the matrix.
        /// </summary>
        public static double InfNorm(Matrix3x3d A)
        {
            double sum1 = Math.Abs(A.m00) + Math.Abs(A.m01) + Math.Abs(A.m02);
            double sum2 = Math.Abs(A.m10) + Math.Abs(A.m11) + Math.Abs(A.m12);
            double sum3 = Math.Abs(A.m20) + Math.Abs(A.m21) + Math.Abs(A.m22);

            double maxSum = sum1;

            if (sum2 > maxSum)
            {
                maxSum = sum2;
            }
            if (sum3 > maxSum)
            {
                maxSum = sum3;
            }

            return(maxSum);
        }
Exemple #11
0
        public static void EigenDecomposition(Matrix3x3d A, out Matrix3x3d eigenVecs, out Vector3d eigenVals)
        {
            const int    numJacobiIterations = 10;
            const double epsilon             = 1e-15;

            Matrix3x3d D = A;

            // only for symmetric matrices!
            eigenVecs = Matrix3x3d.Identity;    // unit matrix
            int iter = 0;

            while (iter < numJacobiIterations)
            {
                // 3 off diagonal elements
                // find off diagonal element with maximum modulus
                int    p, q;
                double a, max;
                max = Math.Abs(D.m01);
                p   = 0; q = 1;
                a   = Math.Abs(D.m02);
                if (a > max)
                {
                    p = 0; q = 2; max = a;
                }
                a = Math.Abs(D.m12);
                if (a > max)
                {
                    p = 1; q = 2; max = a;
                }
                // all small enough -> done
                if (max < epsilon)
                {
                    break;
                }
                // rotate matrix with respect to that element
                JacobiRotate(ref D, ref eigenVecs, p, q);
                iter++;
            }

            eigenVals = new Vector3d(D.m00, D.m11, D.m22);
        }
Exemple #12
0
 /// <summary>
 /// A matrix copied from the matrix m.
 /// </summary>
 public Matrix3x3d(Matrix3x3d m)
 {
     m00 = m.m00; m01 = m.m01; m02 = m.m02;
     m10 = m.m10; m11 = m.m11; m12 = m.m12;
     m20 = m.m20; m21 = m.m21; m22 = m.m22;
 }
Exemple #13
0
 /// <summary>
 /// Are these matrices equal.
 /// </summary>
 public bool Equals(Matrix3x3d mat)
 {
     return(this == mat);
 }
Exemple #14
0
        /// <summary>
        /// Perform a singular value decomposition of matrix A: A = U * sigma * V^T.
        /// This function returns two proper rotation matrices U and V^T which do not
        /// contain a reflection. Reflections are corrected by the inversion handling
        /// proposed by Irving et al. 2004.
        /// </summary>
        public static void SVDWithInversionHandling(Matrix3x3d A, out Vector3d sigma, out Matrix3x3d U, out Matrix3x3d VT)
        {
            Vector3d   S;
            Matrix3x3d AT_A, V;

            AT_A = A.Transpose * A;

            // Eigen decomposition of A^T * A
            EigenDecomposition(AT_A, out V, out S);
            int pos;
            // Detect if V is a reflection .
            // Make a rotation out of it by multiplying one column with -1.
            double detV = V.Determinant;

            if (detV < 0.0f)
            {
                double minLambda = double.PositiveInfinity;
                pos = 0;
                for (int l = 0; l < 3; l++)
                {
                    if (S[l] < minLambda)
                    {
                        pos       = l;
                        minLambda = S[l];
                    }
                }
                V[0, pos] = -V[0, pos];
                V[1, pos] = -V[1, pos];
                V[2, pos] = -V[2, pos];
            }

            if (S.x < 0.0f)
            {
                S.x = 0.0f;                 // safety for sqrt
            }
            if (S.y < 0.0f)
            {
                S.y = 0.0f;
            }
            if (S.z < 0.0f)
            {
                S.z = 0.0f;
            }

            sigma.x = Math.Sqrt(S.x);
            sigma.y = Math.Sqrt(S.y);
            sigma.z = Math.Sqrt(S.z);

            VT = V.Transpose;

            // Check for values of hatF near zero
            int chk = 0;

            pos = 0;
            for (int l = 0; l < 3; l++)
            {
                if (Math.Abs(sigma[l]) < 1.0e-4)
                {
                    pos = l;
                    chk++;
                }
            }

            if (chk > 0)
            {
                if (chk > 1)
                {
                    U = Matrix3x3d.Identity;
                }
                else
                {
                    U = A * V;
                    for (int l = 0; l < 3; l++)
                    {
                        if (l != pos)
                        {
                            for (int m = 0; m < 3; m++)
                            {
                                U[m, l] *= 1.0f / sigma[l];
                            }
                        }
                    }

                    Vector3d[] v     = new Vector3d[2];
                    int        index = 0;
                    for (int l = 0; l < 3; l++)
                    {
                        if (l != pos)
                        {
                            v[index++] = new Vector3d(U[0, l], U[1, l], U[2, l]);
                        }
                    }

                    Vector3d vec = v[0].Cross(v[1]);
                    vec.Normalize();
                    U[0, pos] = vec[0];
                    U[1, pos] = vec[1];
                    U[2, pos] = vec[2];
                }
            }
            else
            {
                Vector3d sigmaInv = new Vector3d(1.0 / sigma.x, 1.0 / sigma.y, 1.0 / sigma.z);

                U = A * V;
                for (int l = 0; l < 3; l++)
                {
                    for (int m = 0; m < 3; m++)
                    {
                        U[m, l] *= sigmaInv[l];
                    }
                }
            }

            double detU = U.Determinant;

            // U is a reflection => inversion
            if (detU < 0.0)
            {
                //std::cout << "Inversion!\n";
                double minLambda = double.PositiveInfinity;
                pos = 0;
                for (int l = 0; l < 3; l++)
                {
                    if (sigma[l] < minLambda)
                    {
                        pos       = l;
                        minLambda = sigma[l];
                    }
                }

                // invert values of smallest singular value
                sigma[pos] = -sigma[pos];
                U[0, pos]  = -U[0, pos];
                U[1, pos]  = -U[1, pos];
                U[2, pos]  = -U[2, pos];
            }

            //end of function
        }
Exemple #15
0
        /// <summary>
        /// Perform a polar decomposition of matrix M and return the rotation matrix R. This method handles the degenerated cases.
        /// </summary>am>
        public static void PolarDecompositionStable(Matrix3x3d M, double tolerance, out Matrix3x3d R)
        {
            Matrix3x3d Mt   = M.Transpose;
            double     Mone = OneNorm(M);
            double     Minf = InfNorm(M);
            double     Eone;
            Matrix3x3d MadjTt = new Matrix3x3d();
            Matrix3x3d Et     = new Matrix3x3d();

            const double eps = 1.0e-15;

            do
            {
                MadjTt.SetRow(0, Mt.GetRow(1).Cross(Mt.GetRow(2)));
                MadjTt.SetRow(1, Mt.GetRow(2).Cross(Mt.GetRow(0)));
                MadjTt.SetRow(2, Mt.GetRow(0).Cross(Mt.GetRow(1)));

                double det = Mt.m00 * MadjTt.m00 + Mt.m01 * MadjTt.m01 + Mt.m02 * MadjTt.m02;

                if (Math.Abs(det) < eps)
                {
                    int index = int.MaxValue;
                    for (int i = 0; i < 3; i++)
                    {
                        double len = MadjTt.GetRow(i).SqrMagnitude;
                        if (len > eps)
                        {
                            // index of valid cross product
                            // => is also the index of the vector in Mt that must be exchanged
                            index = i;
                            break;
                        }
                    }

                    if (index == int.MaxValue)
                    {
                        R = Matrix3x3d.Identity;
                        return;
                    }
                    else
                    {
                        Mt.SetRow(index, Mt.GetRow((index + 1) % 3).Cross(Mt.GetRow((index + 2) % 3)));
                        MadjTt.SetRow((index + 1) % 3, Mt.GetRow((index + 2) % 3).Cross(Mt.GetRow(index)));
                        MadjTt.SetRow((index + 2) % 3, Mt.GetRow(index).Cross(Mt.GetRow((index + 1) % 3)));
                        Matrix3x3d M2 = Mt.Transpose;

                        Mone = OneNorm(M2);
                        Minf = InfNorm(M2);

                        det = Mt.m00 * MadjTt.m00 + Mt.m01 * MadjTt.m01 + Mt.m02 * MadjTt.m02;
                    }
                }

                double MadjTone = OneNorm(MadjTt);
                double MadjTinf = InfNorm(MadjTt);

                double gamma = Math.Sqrt(Math.Sqrt((MadjTone * MadjTinf) / (Mone * Minf)) / Math.Abs(det));

                double g1 = gamma * 0.5;
                double g2 = 0.5 / (gamma * det);

                for (int i = 0; i < 3; i++)
                {
                    for (int j = 0; j < 3; j++)
                    {
                        Et[i, j]  = Mt[i, j];
                        Mt[i, j]  = g1 * Mt[i, j] + g2 * MadjTt[i, j];
                        Et[i, j] -= Mt[i, j];
                    }
                }

                Eone = OneNorm(Et);

                Mone = OneNorm(Mt);
                Minf = InfNorm(Mt);
            }while (Eone > Mone * tolerance);

            // Q = Mt^T
            R = Mt.Transpose;

            //end of function
        }
Exemple #16
0
        /// <summary>
        /// Perform polar decomposition A = (U D U^T) R
        /// </summary>
        public static void PolarDecomposition(Matrix3x3d A, out Matrix3x3d R, out Matrix3x3d U, out Matrix3x3d D)
        {
            // A = SR, where S is symmetric and R is orthonormal
            // -> S = (A A^T)^(1/2)

            // A = U D U^T R

            Matrix3x3d AAT = new Matrix3x3d();

            AAT.m00 = A.m00 * A.m00 + A.m01 * A.m01 + A.m02 * A.m02;
            AAT.m11 = A.m10 * A.m10 + A.m11 * A.m11 + A.m12 * A.m12;
            AAT.m22 = A.m20 * A.m20 + A.m21 * A.m21 + A.m22 * A.m22;

            AAT.m01 = A.m00 * A.m10 + A.m01 * A.m11 + A.m02 * A.m12;
            AAT.m02 = A.m00 * A.m20 + A.m01 * A.m21 + A.m02 * A.m22;
            AAT.m12 = A.m10 * A.m20 + A.m11 * A.m21 + A.m12 * A.m22;

            AAT.m10 = AAT.m01;
            AAT.m20 = AAT.m02;
            AAT.m21 = AAT.m12;

            R = Matrix3x3d.Identity;
            Vector3d eigenVals;

            EigenDecomposition(AAT, out U, out eigenVals);

            double d0 = Math.Sqrt(eigenVals.x);
            double d1 = Math.Sqrt(eigenVals.y);
            double d2 = Math.Sqrt(eigenVals.z);

            D     = new Matrix3x3d();
            D.m00 = d0;
            D.m11 = d1;
            D.m22 = d2;

            const double eps = 1e-15;

            double l0 = eigenVals.x; if (l0 <= eps)

            {
                l0 = 0.0;
            }
            else
            {
                l0 = 1.0 / d0;
            }
            double l1 = eigenVals.y; if (l1 <= eps)

            {
                l1 = 0.0;
            }
            else
            {
                l1 = 1.0 / d1;
            }
            double l2 = eigenVals.z; if (l2 <= eps)

            {
                l2 = 0.0;
            }
            else
            {
                l2 = 1.0 / d2;
            }

            Matrix3x3d S1 = new Matrix3x3d();

            S1.m00 = l0 * U.m00 * U.m00 + l1 * U.m01 * U.m01 + l2 * U.m02 * U.m02;
            S1.m11 = l0 * U.m10 * U.m10 + l1 * U.m11 * U.m11 + l2 * U.m12 * U.m12;
            S1.m22 = l0 * U.m20 * U.m20 + l1 * U.m21 * U.m21 + l2 * U.m22 * U.m22;

            S1.m01 = l0 * U.m00 * U.m10 + l1 * U.m01 * U.m11 + l2 * U.m02 * U.m12;
            S1.m02 = l0 * U.m00 * U.m20 + l1 * U.m01 * U.m21 + l2 * U.m02 * U.m22;
            S1.m12 = l0 * U.m10 * U.m20 + l1 * U.m11 * U.m21 + l2 * U.m12 * U.m22;

            S1.m10 = S1.m01;
            S1.m20 = S1.m02;
            S1.m21 = S1.m12;

            R = S1 * A;

            // stabilize
            Vector3d c0, c1, c2;

            c0 = R.GetColumn(0);
            c1 = R.GetColumn(1);
            c2 = R.GetColumn(2);

            if (c0.SqrMagnitude < eps)
            {
                c0 = c1.Cross(c2);
            }
            else if (c1.SqrMagnitude < eps)
            {
                c1 = c2.Cross(c0);
            }
            else
            {
                c2 = c0.Cross(c1);
            }

            R.SetColumn(0, c0);
            R.SetColumn(1, c1);
            R.SetColumn(2, c2);
        }