Exemple #1
0
        public List <PredictionResult> CrossValidateWithBoosting(SAMDataPoint.FeelingModel feelingsmodel, int nFold, double[] answersFromPrevious, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <PredictionResult> predictedResults = new List <PredictionResult>();

            List <List <double> > tempFeatuers = GetFeatureValues(features, samData);

            if (answersFromPrevious.Length != tempFeatuers.Count)
            {
                //answers from previous is not the same size as current feature list, e.g. something is wrong
                Log.LogMessage("The number of guessses from previous machine is the same as number of datapoints in this");
                return(null);
            }
            //Split into crossvalidation parts
            List <List <double> > tempFeatures = tempFeatuers.NormalizeFeatureList <double>(normalizationType).ToList();

            for (int i = 0; i < tempFeatuers.Count; i++)
            {
                tempFeatuers[i].Add(answersFromPrevious[i]);
            }
            List <Tuple <SVMProblem, SVMProblem> > problems = tempFeatuers.GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings);


            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();

            foreach (SVMParameter SVMpara in Parameters)
            {
                List <double> guesses = new List <double>();
                //model and predict each nfold
                foreach (Tuple <SVMProblem, SVMProblem> tupleProblem in problems)
                {
                    guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), guesses.ConvertAll(x => (int)x).ToList());
                predictedResults.Add(pR);
            }
            return(predictedResults);
        }
Exemple #2
0
        public PredictionResult DoBoosting(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizeFormat = Normalize.OneMinusOne)
        {
            if (boostingOrder.Count != standardClassifiers.Count)
            {
                //if boosting order and standardClassifier is not the same size an out of bounds is invetatible
                Log.LogMessage("The Boosting order list is not the same as the number of classifiers, I'm giving you a null");
                return(null);
            }

            PredictionResult prevResult = null;

            for (int i = 0; i < boostingOrder.Count; i++)
            {
                if (i == 0)
                {
                    prevResult = FindBestFScorePrediction(standardClassifiers[boostingOrder[i]].CrossValidate(feelingsmodel, useIAPSratings, normalizeFormat));
                }
                else
                {
                    prevResult = FindBestFScorePrediction(standardClassifiers[boostingOrder[i]].CrossValidateWithBoosting(feelingsmodel, nFold, prevResult.guesses.ConvertAll(x => (double)x).ToArray(), useIAPSratings, normalizeFormat));
                }
            }
            return(prevResult);
        }
Exemple #3
0
        public List<PredictionResult> DoStacking(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizeFormat = Normalize.OneMinusOne)
        {
            List<PredictionResult> classifiers = new List<PredictionResult>();
            //For each classifier run a crossvalidation and find the best params
            foreach (StdClassifier classifier in standardClassifiers)
            {
                List<PredictionResult> results = classifier.OldCrossValidate(feelingsmodel, 1, useIAPSratings, normalizeFormat);
                classifiers.Add(results.OrderBy(x => x.GetAverageFScore()).First());
            }

            List<List<double>> featureList = new List<List<double>>();
            //Create a List of list of answers from each machine
            for (int i = 0; i < samData.dataPoints.Count; i++)
            {
                List<double> featuresToDataPoint = new List<double>();
                foreach (PredictionResult classifier in classifiers)
                {
                    featuresToDataPoint.Add(classifier.guesses[i]);
                }
                featureList.Add(featuresToDataPoint);
            }
            //Split into nfold problems
            List<Tuple<SVMProblem, SVMProblem>> problems = featureList.GetCrossValidationSets<double>(samData, feelingsmodel, nFold, useIAPSratings);

            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();

            List<PredictionResult> finalResults = new List<PredictionResult>();

            //Run for each parameter setting
            int cnt = 1;
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(cnt++, Parameters.Count);
                }
                List<double> guesses = new List<double>();
                //model and predict each nfold
                foreach (Tuple<SVMProblem, SVMProblem> tupleProblem in problems)
                {
                    guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List<double> pres = CalculatePrecision(confus, numberOfLabels);
                List<double> recall = CalculateRecall(confus, numberOfLabels);
                List<double> fscore = CalculateFScore(pres, recall);
                PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, SVMpara, new List<Feature> { }, answers.ToList(), guesses.ConvertAll(x => (int)x));
                finalResults.Add(pR);
            }
            return finalResults;
        }
Exemple #4
0
        public List<PredictionResult> CrossValidate(SAMDataPoint.FeelingModel feelingsmodel, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List<PredictionResult> predictedResults = new List<PredictionResult>();
            //Split into crossvalidation parts
            SVMProblem problems = GetFeatureValues(features, samData).NormalizeFeatureList<double>(normalizationType).CreateCompleteProblem(samData, feelingsmodel);

            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int progressCounter = 0;
            if (answers.Distinct().Count() <= 1)
            {
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(answers.ToList().ConvertAll(x => (double)x).ToArray(), answers, numberOfLabels);
                List<double> pres = CalculatePrecision(confus, numberOfLabels);
                List<double> recall = CalculateRecall(confus, numberOfLabels);
                List<double> fscore = CalculateFScore(pres, recall);
                PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), features, answers.ToList(), answers.ToList().ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                Log.LogMessage(ONLY_ONE_CLASS);
                Log.LogMessage("");
                return predictedResults;
            }
            else if(problems.X.Count == 0)
            {
                Log.LogMessage("Empty problem in "+ Name);
                return null;
            }
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
                double[] guesses = new double[samData.dataPoints.Count];
                //model and predict each nfold
                try
                {
                    problems.CrossValidation(SVMpara, samData.dataPoints.Count, out guesses);
                }
                catch (Exception e)
                {
                    for (int i = 0; i < samData.dataPoints.Count; i++)
                    {
                        guesses[i] = -1;
                    }
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List<double> pres = CalculatePrecision(confus, numberOfLabels);
                List<double> recall = CalculateRecall(confus, numberOfLabels);
                List<double> fscore = CalculateFScore(pres, recall);
                PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), Array.ConvertAll(guesses, (x=> (int)x)).ToList());
                predictedResults.Add(pR);
                progressCounter++;
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
            }

            return predictedResults;
        }
Exemple #5
0
        /// <summary>
        /// Run crossvalidation for the feature setup for this machine
        /// </summary>
        /// <param name="feelingsmodel"></param>
        /// <param name="nFold"></param>
        /// <param name="useIAPSratings"></param>
        public List<PredictionResult> OldCrossValidate(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List<PredictionResult> predictedResults = new List<PredictionResult>();
            //Split into crossvalidation parts
            List<Tuple<SVMProblem, SVMProblem>> problems = GetFeatureValues(features, samData).NormalizeFeatureList<double>(normalizationType).GetCrossValidationSets<double>(samData, feelingsmodel, nFold, useIAPSratings);
            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int progressCounter = 0;
            bool postedOneClassError = false;
            if(answers.Distinct().Count() <= 1)
            {
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(answers.ToList().ConvertAll(x=>(double)x).ToArray(), answers, numberOfLabels);
                List<double> pres = CalculatePrecision(confus, numberOfLabels);
                List<double> recall = CalculateRecall(confus, numberOfLabels);
                List<double> fscore = CalculateFScore(pres, recall);
                PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), features, answers.ToList(), answers.ToList().ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                Log.LogMessage(ONLY_ONE_CLASS);
                Log.LogMessage("");
                return predictedResults;
            }
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
                List<double> guesses = new List<double>();
                //model and predict each nfold
                try
                {
                    foreach (Tuple<SVMProblem, SVMProblem> tupleProblem in problems)
                    {
                        SVMModel trainingModel = tupleProblem.Item1.Train(SVMpara);
                        if (trainingModel.ClassCount <= 1)
                        {
                            if (!postedOneClassError)
                            {
                                Log.LogMessage(ONLY_ONE_CLASS_IN_TRAINING);
                                postedOneClassError = true;
                            }
                            guesses.AddRange(tupleProblem.Item1.Y.ToList().Take(tupleProblem.Item2.Y.Count()).ToList());
                        }
                        else
                        {
                            double[] d = tupleProblem.Item2.Predict(trainingModel);
                            guesses.AddRange(d);
                        }
                    }
                }
                catch(Exception e)
                {
                    for (int i = 0; i < samData.dataPoints.Count; i++)
                    {
                        guesses.Add(-1);
                    }
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List<double> pres = CalculatePrecision(confus, numberOfLabels);
                List<double> recall = CalculateRecall(confus, numberOfLabels);
                List<double> fscore = CalculateFScore(pres, recall);
                PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), guesses.ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
            }

            return predictedResults;
        }
Exemple #6
0
        public List<PredictionResult> CrossValidateWithBoosting(SAMDataPoint.FeelingModel feelingsmodel, int nFold, double[] answersFromPrevious, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List<PredictionResult> predictedResults = new List<PredictionResult>();

            List<List<double>> tempFeatuers = GetFeatureValues(features, samData);
            if (answersFromPrevious.Length != tempFeatuers.Count)
            {
                //answers from previous is not the same size as current feature list, e.g. something is wrong
                Log.LogMessage("The number of guessses from previous machine is the same as number of datapoints in this");
                return null;
            }
            //Split into crossvalidation parts
            List<List<double>> tempFeatures = tempFeatuers.NormalizeFeatureList<double>(normalizationType).ToList();
            for (int i = 0; i < tempFeatuers.Count; i++)
            {
                tempFeatuers[i].Add(answersFromPrevious[i]);
            }
            List<Tuple<SVMProblem, SVMProblem>> problems = tempFeatuers.GetCrossValidationSets<double>(samData, feelingsmodel, nFold, useIAPSratings);

            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();

            foreach (SVMParameter SVMpara in Parameters)
            {
                List<double> guesses = new List<double>();
                //model and predict each nfold
                foreach (Tuple<SVMProblem, SVMProblem> tupleProblem in problems)
                {
                    guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List<double> pres = CalculatePrecision(confus, numberOfLabels);
                List<double> recall = CalculateRecall(confus, numberOfLabels);
                List<double> fscore = CalculateFScore(pres, recall);
                PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), guesses.ConvertAll(x => (int)x).ToList());
                predictedResults.Add(pR);
            }
            return predictedResults;
        }
Exemple #7
0
        /// <summary>
        /// Run crossvalidation for each combination of the features for this machine
        /// </summary>
        /// <param name="feelingsmodel"></param>
        /// <param name="nFold"></param>
        /// <param name="useIAPSratings"></param>
        public List<PredictionResult> CrossValidateCombinations(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List<List<bool>> combinations = CalculateCombinations(new List<bool>() { }, features.Count);

            //Get different combination of problems
            List<Tuple<List<Tuple<SVMProblem, SVMProblem>>, List<Feature>>> featureCombinationProblems = new List<Tuple<List<Tuple<SVMProblem, SVMProblem>>, List<Feature>>>();

            for (int i = 0; i < combinations.Count; i++)
            {
                List<Feature> tempFeatures = new List<Feature>();
                for (int j = 0; j < combinations[i].Count; j++)
                {
                    // For each feature combination save the different problems for crossvalidation

                    if (combinations[i][j] == true)
                    {
                        tempFeatures.Add(features[j]);
                    }

                }
                featureCombinationProblems.Add
                                        (
                                            new Tuple<List<Tuple<SVMProblem, SVMProblem>>, List<Feature>>
                                            (
                                                GetFeatureValues(tempFeatures, samData).NormalizeFeatureList<double>(normalizationType).GetCrossValidationSets<double>(samData, feelingsmodel, nFold, useIAPSratings),
                                                tempFeatures
                                            )
                                         );
            }

            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int progressCounter = 0;
            List<PredictionResult> predictionResults = new List<PredictionResult>();
            foreach (SVMParameter SVMpara in Parameters)
            {
                //For each feature setup
                for (int n = 0; n < featureCombinationProblems.Count; n++)
                {
                    if (UpdateCallback != null)
                    {
                        UpdateCallback(progressCounter, Parameters.Count * featureCombinationProblems.Count);
                    }
                    //PrintProgress(progressCounter, featureCombinationProblems.Count);
                    List<double> guesses = new List<double>();
                    //model and predict each nfold
                    foreach (var tupleProblem in featureCombinationProblems[n].Item1)
                    {
                        guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                    }
                    int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                    //Calculate scoring results
                    double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                    List<double> pres = CalculatePrecision(confus, numberOfLabels);
                    List<double> recall = CalculateRecall(confus, numberOfLabels);
                    List<double> fscore = CalculateFScore(pres, recall);
                    PredictionResult pR = new PredictionResult(confus, recall, pres, fscore, SVMpara, featureCombinationProblems[n].Item2, answers.ToList(), guesses.ConvertAll(x => (int)x));
                    predictionResults.Add(pR);
                    progressCounter++;
                }

            }
            if (UpdateCallback != null)
            {
                UpdateCallback(progressCounter, Parameters.Count * featureCombinationProblems.Count);
            }

            return predictionResults;
        }
Exemple #8
0
        /// <summary>
        /// Run crossvalidation for each combination of the features for this machine
        /// </summary>
        /// <param name="feelingsmodel"></param>
        /// <param name="nFold"></param>
        /// <param name="useIAPSratings"></param>
        public List <PredictionResult> CrossValidateCombinations(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <List <bool> > combinations = CalculateCombinations(new List <bool>()
            {
            }, features.Count);

            //Get different combination of problems
            List <Tuple <List <Tuple <SVMProblem, SVMProblem> >, List <Feature> > > featureCombinationProblems = new List <Tuple <List <Tuple <SVMProblem, SVMProblem> >, List <Feature> > >();

            for (int i = 0; i < combinations.Count; i++)
            {
                List <Feature> tempFeatures = new List <Feature>();
                for (int j = 0; j < combinations[i].Count; j++)
                {
                    // For each feature combination save the different problems for crossvalidation

                    if (combinations[i][j] == true)
                    {
                        tempFeatures.Add(features[j]);
                    }
                }
                featureCombinationProblems.Add
                (
                    new Tuple <List <Tuple <SVMProblem, SVMProblem> >, List <Feature> >
                    (
                        GetFeatureValues(tempFeatures, samData).NormalizeFeatureList <double>(normalizationType).GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings),
                        tempFeatures
                    )
                );
            }

            //Get correct results
            int[] answers         = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   progressCounter = 0;
            List <PredictionResult> predictionResults = new List <PredictionResult>();

            foreach (SVMParameter SVMpara in Parameters)
            {
                //For each feature setup
                for (int n = 0; n < featureCombinationProblems.Count; n++)
                {
                    if (UpdateCallback != null)
                    {
                        UpdateCallback(progressCounter, Parameters.Count * featureCombinationProblems.Count);
                    }
                    //PrintProgress(progressCounter, featureCombinationProblems.Count);
                    List <double> guesses = new List <double>();
                    //model and predict each nfold
                    foreach (var tupleProblem in featureCombinationProblems[n].Item1)
                    {
                        guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                    }
                    int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                    //Calculate scoring results
                    double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                    List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                    List <double>    recall = CalculateRecall(confus, numberOfLabels);
                    List <double>    fscore = CalculateFScore(pres, recall);
                    PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, featureCombinationProblems[n].Item2, answers.ToList(), guesses.ConvertAll(x => (int)x));
                    predictionResults.Add(pR);
                    progressCounter++;
                }
            }
            if (UpdateCallback != null)
            {
                UpdateCallback(progressCounter, Parameters.Count * featureCombinationProblems.Count);
            }

            return(predictionResults);
        }
Exemple #9
0
        public List <PredictionResult> CrossValidate(SAMDataPoint.FeelingModel feelingsmodel, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <PredictionResult> predictedResults = new List <PredictionResult>();
            //Split into crossvalidation parts
            SVMProblem problems = GetFeatureValues(features, samData).NormalizeFeatureList <double>(normalizationType).CreateCompleteProblem(samData, feelingsmodel);

            //Get correct results
            int[] answers         = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   progressCounter = 0;

            if (answers.Distinct().Count() <= 1)
            {
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(answers.ToList().ConvertAll(x => (double)x).ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), features, answers.ToList(), answers.ToList().ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                Log.LogMessage(ONLY_ONE_CLASS);
                Log.LogMessage("");
                return(predictedResults);
            }
            else if (problems.X.Count == 0)
            {
                Log.LogMessage("Empty problem in " + Name);
                return(null);
            }
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
                double[] guesses = new double[samData.dataPoints.Count];
                //model and predict each nfold
                try
                {
                    problems.CrossValidation(SVMpara, samData.dataPoints.Count, out guesses);
                }
                catch (Exception e)
                {
                    for (int i = 0; i < samData.dataPoints.Count; i++)
                    {
                        guesses[i] = -1;
                    }
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), Array.ConvertAll(guesses, (x => (int)x)).ToList());
                predictedResults.Add(pR);
                progressCounter++;
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
            }

            return(predictedResults);
        }
Exemple #10
0
        /// <summary>
        /// Run crossvalidation for the feature setup for this machine
        /// </summary>
        /// <param name="feelingsmodel"></param>
        /// <param name="nFold"></param>
        /// <param name="useIAPSratings"></param>
        public List <PredictionResult> OldCrossValidate(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <PredictionResult> predictedResults = new List <PredictionResult>();
            //Split into crossvalidation parts
            List <Tuple <SVMProblem, SVMProblem> > problems = GetFeatureValues(features, samData).NormalizeFeatureList <double>(normalizationType).GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings);

            //Get correct results
            int[] answers             = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   progressCounter     = 0;
            bool  postedOneClassError = false;

            if (answers.Distinct().Count() <= 1)
            {
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(answers.ToList().ConvertAll(x => (double)x).ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), features, answers.ToList(), answers.ToList().ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                Log.LogMessage(ONLY_ONE_CLASS);
                Log.LogMessage("");
                return(predictedResults);
            }
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
                List <double> guesses = new List <double>();
                //model and predict each nfold
                try
                {
                    foreach (Tuple <SVMProblem, SVMProblem> tupleProblem in problems)
                    {
                        SVMModel trainingModel = tupleProblem.Item1.Train(SVMpara);
                        if (trainingModel.ClassCount <= 1)
                        {
                            if (!postedOneClassError)
                            {
                                Log.LogMessage(ONLY_ONE_CLASS_IN_TRAINING);
                                postedOneClassError = true;
                            }
                            guesses.AddRange(tupleProblem.Item1.Y.ToList().Take(tupleProblem.Item2.Y.Count()).ToList());
                        }
                        else
                        {
                            double[] d = tupleProblem.Item2.Predict(trainingModel);
                            guesses.AddRange(d);
                        }
                    }
                }
                catch (Exception e)
                {
                    for (int i = 0; i < samData.dataPoints.Count; i++)
                    {
                        guesses.Add(-1);
                    }
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), guesses.ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
            }

            return(predictedResults);
        }
Exemple #11
0
        private void WriteResult(Excel.Worksheet workSheet, PredictionResult pResult, SAMDataPoint.FeelingModel feelingModel)
        {
            int counter = 0;
            switch (feelingModel)
            {
                case SAMDataPoint.FeelingModel.Arousal2High:
                    counter = A2HighStart;
                    break;
                case SAMDataPoint.FeelingModel.Arousal2Low:
                    counter = A2LowStart;
                    break;
                case SAMDataPoint.FeelingModel.Arousal3:
                    counter = A3Start;
                    break;
                case SAMDataPoint.FeelingModel.Valence2High:
                    counter = V2HighStart;
                    break;
                case SAMDataPoint.FeelingModel.Valence2Low:
                    counter = V2LowStart;
                    break;
                case SAMDataPoint.FeelingModel.Valence3:
                    counter = V3Start;
                    break;
            }

            workSheet.Cells[counter, 3] = pResult.GetAccuracy();

            counter++;
            workSheet.Cells[counter, 3] = pResult.GetAverageFScore();

            for (int f = 0; f < pResult.fscores.Count; f++)
            {
                counter++;
                if (double.IsNaN(pResult.fscores[f]))
                {
                    workSheet.Cells[counter, 3] = "NaN";
                }
                else
                {
                    workSheet.Cells[counter, 3] = pResult.fscores[f];
                }
            }

            for (int p = 0; p < pResult.precisions.Count; p++)
            {
                counter++;
                if (double.IsNaN(pResult.precisions[p]))
                {
                    workSheet.Cells[counter, 3] = "NaN";
                }
                else
                {
                    workSheet.Cells[counter, 3] = pResult.precisions[p];
                }
            }

            for (int r = 0; r < pResult.recalls.Count; r++)
            {
                counter++;
                if (double.IsNaN(pResult.recalls[r]))
                {
                    workSheet.Cells[counter, 3] = "NaN";
                }
                else
                {
                    workSheet.Cells[counter, 3] = pResult.recalls[r];
                }
            }
            counter++;
            for (int i = 3; i < pResult.features.Count + 3; i++)
            {
                workSheet.Cells[counter, i] = pResult.features[i - 3].name;
            }

            counter++;
            workSheet.Cells[counter, 3] = pResult.svmParams.C;

            counter++;
            workSheet.Cells[counter, 3] = pResult.svmParams.Gamma;

            counter++;
            workSheet.Cells[counter, 3] = pResult.svmParams.Kernel;
        }
Exemple #12
0
 public void AddDataToPerson(string name, Book book, PredictionResult predictResult, SAMDataPoint.FeelingModel model)
 {
     Log.LogMessage("Writing results from " + name + " to excel files");
     foreach (Excel.Worksheet ws in books[book].Sheets)
     {
         if (ws.Name == name)
         {
             WriteResult(ws, predictResult, model);
         }
     }
 }
Exemple #13
0
        private void WriteResult(Excel.Worksheet workSheet, PredictionResult pResult, SAMDataPoint.FeelingModel feelingModel)
        {
            int counter = 0;

            switch (feelingModel)
            {
            case SAMDataPoint.FeelingModel.Arousal2High:
                counter = A2HighStart;
                break;

            case SAMDataPoint.FeelingModel.Arousal2Low:
                counter = A2LowStart;
                break;

            case SAMDataPoint.FeelingModel.Arousal3:
                counter = A3Start;
                break;

            case SAMDataPoint.FeelingModel.Valence2High:
                counter = V2HighStart;
                break;

            case SAMDataPoint.FeelingModel.Valence2Low:
                counter = V2LowStart;
                break;

            case SAMDataPoint.FeelingModel.Valence3:
                counter = V3Start;
                break;
            }

            workSheet.Cells[counter, 3] = pResult.GetAccuracy();

            counter++;
            workSheet.Cells[counter, 3] = pResult.GetAverageFScore();

            for (int f = 0; f < pResult.fscores.Count; f++)
            {
                counter++;
                if (double.IsNaN(pResult.fscores[f]))
                {
                    workSheet.Cells[counter, 3] = "NaN";
                }
                else
                {
                    workSheet.Cells[counter, 3] = pResult.fscores[f];
                }
            }

            for (int p = 0; p < pResult.precisions.Count; p++)
            {
                counter++;
                if (double.IsNaN(pResult.precisions[p]))
                {
                    workSheet.Cells[counter, 3] = "NaN";
                }
                else
                {
                    workSheet.Cells[counter, 3] = pResult.precisions[p];
                }
            }

            for (int r = 0; r < pResult.recalls.Count; r++)
            {
                counter++;
                if (double.IsNaN(pResult.recalls[r]))
                {
                    workSheet.Cells[counter, 3] = "NaN";
                }
                else
                {
                    workSheet.Cells[counter, 3] = pResult.recalls[r];
                }
            }
            counter++;
            for (int i = 3; i < pResult.features.Count + 3; i++)
            {
                workSheet.Cells[counter, i] = pResult.features[i - 3].name;
            }


            counter++;
            workSheet.Cells[counter, 3] = pResult.svmParams.C;

            counter++;
            workSheet.Cells[counter, 3] = pResult.svmParams.Gamma;

            counter++;
            workSheet.Cells[counter, 3] = pResult.svmParams.Kernel;
        }