public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        {
            if (m_manifoldPtr == null)
            {
                //swapped?
                m_manifoldPtr = m_dispatcher.GetNewManifold(body0, body1);
                m_ownManifold = true;
            }
            resultOut.SetPersistentManifold(m_manifoldPtr);

            //comment-out next line to test multi-contact generation
            //resultOut.getPersistentManifold().clearManifold();


            ConvexShape min0 = body0.GetCollisionShape() as ConvexShape;
            ConvexShape min1 = body1.GetCollisionShape() as ConvexShape;

            IndexedVector3 normalOnB     = IndexedVector3.Zero;
            IndexedVector3 pointOnBWorld = IndexedVector3.Zero;

            {
                ClosestPointInput input = ClosestPointInput.Default();

                using (GjkPairDetector gjkPairDetector = BulletGlobals.GjkPairDetectorPool.Get())
                {
                    gjkPairDetector.Initialize(min0, min1, m_simplexSolver, m_pdSolver);
                    //TODO: if (dispatchInfo.m_useContinuous)
                    gjkPairDetector.SetMinkowskiA(min0);
                    gjkPairDetector.SetMinkowskiB(min1);

                    {
                        input.m_maximumDistanceSquared  = min0.GetMargin() + min1.GetMargin() + m_manifoldPtr.GetContactBreakingThreshold();
                        input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
                    }

                    input.m_transformA = body0.GetWorldTransform();
                    input.m_transformB = body1.GetWorldTransform();

                    gjkPairDetector.GetClosestPoints(ref input, resultOut, dispatchInfo.getDebugDraw(), false);
#if DEBUG
                    if (BulletGlobals.g_streamWriter != null)
                    {
                        BulletGlobals.g_streamWriter.WriteLine("c2dc2d processCollision");
                        MathUtil.PrintMatrix(BulletGlobals.g_streamWriter, "transformA", input.m_transformA);
                        MathUtil.PrintMatrix(BulletGlobals.g_streamWriter, "transformB", input.m_transformB);
                    }
#endif
                }
                //BulletGlobals.GjkPairDetectorPool.Free(gjkPairDetector);
                //btVector3 v0,v1;
                //btVector3 sepNormalWorldSpace;
            }

            if (m_ownManifold)
            {
                resultOut.RefreshContactPoints();
            }
        }
        public void ComputeClosestPoints(ref IndexedMatrix transA, ref IndexedMatrix transB, PointCollector pointCollector)
        {
            if (m_convexB1 != null)
            {
                m_simplexSolver.Reset();
                GjkPairDetector   gjk   = new GjkPairDetector(m_convexA, m_convexB1, m_convexA.GetShapeType(), m_convexB1.GetShapeType(), m_convexA.GetMargin(), m_convexB1.GetMargin(), m_simplexSolver, m_penetrationDepthSolver);
                ClosestPointInput input = ClosestPointInput.Default();
                input.m_transformA = transA;
                input.m_transformB = transB;
                gjk.GetClosestPoints(ref input, pointCollector, null);
            }
            else
            {
                //convex versus plane
                ConvexShape      convexShape = m_convexA;
                StaticPlaneShape planeShape  = m_planeShape;

                bool           hasCollision  = false;
                IndexedVector3 planeNormal   = planeShape.GetPlaneNormal();
                float          planeConstant = planeShape.GetPlaneConstant();

                IndexedMatrix convexWorldTransform = transA;
                IndexedMatrix convexInPlaneTrans   = transB.Inverse() * convexWorldTransform;
                IndexedMatrix planeInConvex        = convexWorldTransform.Inverse() * transB;

                IndexedVector3 vtx = convexShape.LocalGetSupportingVertex(planeInConvex._basis * -planeNormal);

                IndexedVector3 vtxInPlane = convexInPlaneTrans * vtx;
                float          distance   = IndexedVector3.Dot(planeNormal, vtxInPlane) - planeConstant;

                IndexedVector3 vtxInPlaneProjected = vtxInPlane - distance * planeNormal;
                IndexedVector3 vtxInPlaneWorld     = transB * vtxInPlaneProjected;
                IndexedVector3 normalOnSurfaceB    = transB._basis * planeNormal;

                pointCollector.AddContactPoint(
                    ref normalOnSurfaceB,
                    ref vtxInPlaneWorld,
                    distance);
            }
        }
        public bool CalcPenDepth(ISimplexSolverInterface simplexSolver, ConvexShape convexA, ConvexShape convexB, ref IndexedMatrix transA, ref IndexedMatrix transB,
                                 ref IndexedVector3 v, ref IndexedVector3 pa, ref IndexedVector3 pb, IDebugDraw debugDraw)
        {
            bool check2d = convexA.IsConvex2d() && convexB.IsConvex2d();


            float          minProj = float.MaxValue;
            IndexedVector3 minNorm = IndexedVector3.Zero;
            IndexedVector3 minA = IndexedVector3.Zero, minB = IndexedVector3.Zero;
            IndexedVector3 seperatingAxisInA, seperatingAxisInB;
            IndexedVector3 pInA, qInB, pWorld, qWorld, w;

#if USE_BATCHED_SUPPORT
            IndexedVector4[] supportVerticesABatch  = new IndexedVector4[NUM_UNITSPHERE_POINTS + ConvexShape.MAX_PREFERRED_PENETRATION_DIRECTIONS * 2];
            IndexedVector4[] supportVerticesBBatch  = new IndexedVector4[NUM_UNITSPHERE_POINTS + ConvexShape.MAX_PREFERRED_PENETRATION_DIRECTIONS * 2];
            IndexedVector3[] seperatingAxisInABatch = new IndexedVector3[NUM_UNITSPHERE_POINTS + ConvexShape.MAX_PREFERRED_PENETRATION_DIRECTIONS * 2];
            IndexedVector3[] seperatingAxisInBBatch = new IndexedVector3[NUM_UNITSPHERE_POINTS + ConvexShape.MAX_PREFERRED_PENETRATION_DIRECTIONS * 2];


            int numSampleDirections = NUM_UNITSPHERE_POINTS;

            for (int i = 0; i < numSampleDirections; i++)
            {
                IndexedVector3 norm    = sPenetrationDirections[i];
                IndexedVector3 negNorm = -norm;

                IndexedBasisMatrix.Multiply(ref seperatingAxisInABatch[i], ref negNorm, ref transA._basis);
                IndexedBasisMatrix.Multiply(ref seperatingAxisInBBatch[i], ref norm, ref transB._basis);
                //seperatingAxisInABatch[i] = (-norm) * transA._basis;
                //seperatingAxisInBBatch[i] = norm * transB._basis;
            }

            {
                int numPDA = convexA.GetNumPreferredPenetrationDirections();
                if (numPDA > 0)
                {
                    for (int i = 0; i < numPDA; i++)
                    {
                        IndexedVector3 norm;
                        convexA.GetPreferredPenetrationDirection(i, out norm);
                        IndexedBasisMatrix.Multiply(ref norm, ref transA._basis, ref norm);
                        sPenetrationDirections[numSampleDirections] = norm;
                        IndexedVector3 negNorm = -norm;
                        IndexedBasisMatrix.Multiply(ref seperatingAxisInABatch[numSampleDirections], ref negNorm, ref transA._basis);
                        IndexedBasisMatrix.Multiply(ref seperatingAxisInBBatch[numSampleDirections], ref norm, ref transB._basis);
                        numSampleDirections++;
                    }
                }
            }

            {
                int numPDB = convexB.GetNumPreferredPenetrationDirections();
                if (numPDB > 0)
                {
                    for (int i = 0; i < numPDB; i++)
                    {
                        IndexedVector3 norm;
                        convexB.GetPreferredPenetrationDirection(i, out norm);
                        IndexedBasisMatrix.Multiply(ref norm, ref transB._basis, ref norm);
                        sPenetrationDirections[numSampleDirections] = norm;
                        IndexedVector3 negNorm = -norm;
                        IndexedBasisMatrix.Multiply(ref seperatingAxisInABatch[numSampleDirections], ref negNorm, ref transA._basis);
                        IndexedBasisMatrix.Multiply(ref seperatingAxisInBBatch[numSampleDirections], ref norm, ref transB._basis);
                        numSampleDirections++;
                    }
                }
            }

            convexA.BatchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch, supportVerticesABatch, numSampleDirections);
            convexB.BatchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch, supportVerticesBBatch, numSampleDirections);

            for (int i = 0; i < numSampleDirections; i++)
            {
                IndexedVector3 norm = sPenetrationDirections[i];
                if (check2d)
                {
                    // shouldn't this be Y ?
                    norm.Z = 0;
                }
                if (norm.LengthSquared() > 0.01f)
                {
                    seperatingAxisInA = seperatingAxisInABatch[i];
                    seperatingAxisInB = seperatingAxisInBBatch[i];

                    pInA = new IndexedVector3(supportVerticesABatch[i].X, supportVerticesABatch[i].Y, supportVerticesABatch[i].Z);
                    qInB = new IndexedVector3(supportVerticesBBatch[i].X, supportVerticesBBatch[i].Y, supportVerticesBBatch[i].Z);

                    IndexedMatrix.Multiply(out pWorld, ref transA, ref pInA);
                    IndexedMatrix.Multiply(out qWorld, ref transB, ref qInB);
                    if (check2d)
                    {
                        // shouldn't this be Y ?
                        pWorld.Z = 0f;
                        qWorld.Z = 0f;
                    }

                    IndexedVector3.Subtract(out w, ref qWorld, ref pWorld);
                    float delta = IndexedVector3.Dot(ref norm, ref w);
                    //find smallest delta
                    if (delta < minProj)
                    {
                        minProj = delta;
                        minNorm = norm;
                        minA    = pWorld;
                        minB    = qWorld;
                    }
                }
            }
#else
            int numSampleDirections = NUM_UNITSPHERE_POINTS;

            {
                int numPDA = convexA.GetNumPreferredPenetrationDirections();
                if (numPDA > 0)
                {
                    for (int i = 0; i < numPDA; i++)
                    {
                        IndexedVector3 norm;
                        convexA.GetPreferredPenetrationDirection(i, out norm);
                        norm = IndexedVector3.TransformNormal(norm, transA);
                        sPenetrationDirections[numSampleDirections] = norm;
                        numSampleDirections++;
                    }
                }
            }

            {
                int numPDB = convexB.GetNumPreferredPenetrationDirections();
                if (numPDB > 0)
                {
                    for (int i = 0; i < numPDB; i++)
                    {
                        IndexedVector3 norm = IndexedVector3.Zero;
                        convexB.GetPreferredPenetrationDirection(i, out norm);
                        norm = IndexedVector3.TransformNormal(norm, transB);
                        sPenetrationDirections[numSampleDirections] = norm;
                        numSampleDirections++;
                    }
                }
            }

            for (int i = 0; i < numSampleDirections; i++)
            {
                IndexedVector3 norm = sPenetrationDirections[i];
                if (check2d)
                {
                    norm.Z = 0f;
                }
                if (norm.LengthSquared() > 0.01f)
                {
                    seperatingAxisInA = IndexedVector3.TransformNormal(-norm, transA);
                    seperatingAxisInB = IndexedVector3.TransformNormal(norm, transB);
                    pInA   = convexA.LocalGetSupportVertexWithoutMarginNonVirtual(ref seperatingAxisInA);
                    qInB   = convexB.LocalGetSupportVertexWithoutMarginNonVirtual(ref seperatingAxisInB);
                    pWorld = IndexedVector3.Transform(pInA, transA);
                    qWorld = IndexedVector3.Transform(qInB, transB);
                    if (check2d)
                    {
                        pWorld.Z = 0.0f;
                        qWorld.Z = 0.0f;
                    }

                    w = qWorld - pWorld;
                    float delta = IndexedVector3.Dot(norm, w);
                    //find smallest delta
                    if (delta < minProj)
                    {
                        minProj = delta;
                        minNorm = norm;
                        minA    = pWorld;
                        minB    = qWorld;
                    }
                }
            }
#endif //USE_BATCHED_SUPPORT

            //add the margins

            minA += minNorm * convexA.GetMarginNonVirtual();
            minB -= minNorm * convexB.GetMarginNonVirtual();
            //no penetration
            if (minProj < 0f)
            {
                return(false);
            }

            float extraSeparation = 0.5f;///scale dependent
            minProj += extraSeparation + (convexA.GetMarginNonVirtual() + convexB.GetMarginNonVirtual());

#if DEBUG_DRAW
            if (debugDraw)
            {
                IndexedVector3 color = new IndexedVector3(0, 1, 0);
                debugDraw.drawLine(minA, minB, color);
                color = new IndexedVector3(1, 1, 1);
                IndexedVector3 vec  = minB - minA;
                float          prj2 = IndexedVector3.Dot(minNorm, vec);
                debugDraw.drawLine(minA, minA + (minNorm * minProj), color);
            }
#endif //DEBUG_DRAW



            GjkPairDetector gjkdet = BulletGlobals.GjkPairDetectorPool.Get();
            gjkdet.Initialize(convexA, convexB, simplexSolver, null);

            float          offsetDist = minProj;
            IndexedVector3 offset     = minNorm * offsetDist;

            ClosestPointInput input = ClosestPointInput.Default();

            IndexedVector3 newOrg = transA._origin + offset;

            IndexedMatrix displacedTrans = transA;
            displacedTrans._origin = newOrg;

            input.m_transformA             = displacedTrans;
            input.m_transformB             = transB;
            input.m_maximumDistanceSquared = float.MaxValue;

            MinkowskiIntermediateResult res = new MinkowskiIntermediateResult();
            gjkdet.SetCachedSeperatingAxis(-minNorm);

            gjkdet.GetClosestPoints(ref input, res, debugDraw, false);

            float correctedMinNorm = minProj - res.m_depth;

            //the penetration depth is over-estimated, relax it
            float penetration_relaxation = 1f;
            minNorm *= penetration_relaxation;

            if (res.m_hasResult)
            {
                pa = res.m_pointInWorld - minNorm * correctedMinNorm;
                pb = res.m_pointInWorld;
                v  = minNorm;

#if DEBUG_DRAW
                if (debugDraw != null)
                {
                    IndexedVector3 color = new IndexedVector3(1, 0, 0);
                    debugDraw.drawLine(pa, pb, color);
                }
#endif//DEBUG_DRAW
            }

            BulletGlobals.GjkPairDetectorPool.Free(gjkdet);
            return(res.m_hasResult);
        }
        public virtual bool CalcTimeOfImpact(ref IndexedMatrix fromA, ref IndexedMatrix toA, ref IndexedMatrix fromB, ref IndexedMatrix toB, CastResult result)
        {
            m_simplexSolver.Reset();

            /// compute linear velocity for this interval, to interpolate
            //assume no rotation/angular velocity, assert here?
            IndexedVector3 linVelA, linVelB;

            linVelA = toA._origin - fromA._origin;
            linVelB = toB._origin - fromB._origin;

            float          radius = 0.001f;
            float          lambda = 0f;
            IndexedVector3 v      = new IndexedVector3(1, 0, 0);

            int maxIter = MAX_ITERATIONS;

            IndexedVector3 n         = IndexedVector3.Zero;
            bool           hasResult = false;
            IndexedVector3 c;
            IndexedVector3 r = (linVelA - linVelB);

            float lastLambda = lambda;
            //float epsilon = float(0.001);

            int numIter = 0;
            //first solution, using GJK


            IndexedMatrix identityTrans = IndexedMatrix.Identity;

            //	result.drawCoordSystem(sphereTr);

            PointCollector pointCollector = new PointCollector();


            using (GjkPairDetector gjk = BulletGlobals.GjkPairDetectorPool.Get())
            {
                gjk.Initialize(m_convexA, m_convexB, m_simplexSolver, null);//m_penetrationDepthSolver);
                ClosestPointInput input = ClosestPointInput.Default();

                //we don't use margins during CCD
                //	gjk.setIgnoreMargin(true);

                input.m_transformA = fromA;
                input.m_transformB = fromB;
                gjk.GetClosestPoints(ref input, pointCollector, null, false);

                hasResult = pointCollector.m_hasResult;
                c         = pointCollector.m_pointInWorld;

                if (hasResult)
                {
                    float dist = pointCollector.m_distance;
                    n = pointCollector.m_normalOnBInWorld;

                    //not close enough
                    while (dist > radius)
                    {
                        numIter++;
                        if (numIter > maxIter)
                        {
                            return(false); //todo: report a failure
                        }
                        float dLambda = 0f;

                        float projectedLinearVelocity = IndexedVector3.Dot(r, n);

                        dLambda = dist / (projectedLinearVelocity);

                        lambda = lambda - dLambda;

                        if (lambda > 1f || lambda < 0f)
                        {
                            return(false);
                        }

                        //todo: next check with relative epsilon
                        if (lambda <= lastLambda)
                        {
                            return(false);
                            //n.setValue(0,0,0);
                            //break;
                        }
                        lastLambda = lambda;

                        //interpolate to next lambda
                        result.DebugDraw(lambda);
                        input.m_transformA._origin = MathUtil.Interpolate3(fromA._origin, toA._origin, lambda);
                        input.m_transformB._origin = MathUtil.Interpolate3(fromB._origin, toB._origin, lambda);

                        gjk.GetClosestPoints(ref input, pointCollector, null, false);
                        if (pointCollector.m_hasResult)
                        {
                            if (pointCollector.m_distance < 0f)
                            {
                                result.m_fraction = lastLambda;
                                n = pointCollector.m_normalOnBInWorld;
                                result.m_normal   = n;
                                result.m_hitPoint = pointCollector.m_pointInWorld;

                                return(true);
                            }
                            c    = pointCollector.m_pointInWorld;
                            n    = pointCollector.m_normalOnBInWorld;
                            dist = pointCollector.m_distance;
                        }
                        else
                        {
                            //??
                            return(false);
                        }
                    }

                    //is n normalized?
                    //don't report time of impact for motion away from the contact normal (or causes minor penetration)
                    if (IndexedVector3.Dot(n, r) >= -result.m_allowedPenetration)
                    {
                        return(false);
                    }

                    result.m_fraction = lambda;
                    result.m_normal   = n;
                    result.m_hitPoint = c;
                    return(true);
                }
            }
            return(false);
        }
        public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        {
            if (m_manifoldPtr == null)
            {
                //swapped?
                m_manifoldPtr = m_dispatcher.GetNewManifold(body0, body1);
                m_ownManifold = true;
            }
            //resultOut = new ManifoldResult();
            resultOut.SetPersistentManifold(m_manifoldPtr);

            //comment-out next line to test multi-contact generation
            //resultOut.GetPersistentManifold().ClearManifold();


            ConvexShape    min0 = body0.GetCollisionShape() as ConvexShape;
            ConvexShape    min1 = body1.GetCollisionShape() as ConvexShape;
            IndexedVector3 normalOnB;
            IndexedVector3 pointOnBWorld;

#if !BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
            if ((min0.GetShapeType() == BroadphaseNativeTypes.CAPSULE_SHAPE_PROXYTYPE) && (min1.GetShapeType() == BroadphaseNativeTypes.CAPSULE_SHAPE_PROXYTYPE))
            {
                CapsuleShape capsuleA = min0 as CapsuleShape;
                CapsuleShape capsuleB = min1 as CapsuleShape;
                //IndexedVector3 localScalingA = capsuleA.GetLocalScaling();
                //IndexedVector3 localScalingB = capsuleB.GetLocalScaling();

                float threshold = m_manifoldPtr.GetContactBreakingThreshold();

                float dist = CapsuleCapsuleDistance(out normalOnB, out pointOnBWorld, capsuleA.GetHalfHeight(), capsuleA.GetRadius(),
                                                    capsuleB.GetHalfHeight(), capsuleB.GetRadius(), capsuleA.GetUpAxis(), capsuleB.GetUpAxis(),
                                                    body0.GetWorldTransform(), body1.GetWorldTransform(), threshold);

                if (dist < threshold)
                {
                    Debug.Assert(normalOnB.LengthSquared() >= (MathUtil.SIMD_EPSILON * MathUtil.SIMD_EPSILON));
                    resultOut.AddContactPoint(ref normalOnB, ref pointOnBWorld, dist);
                }
                resultOut.RefreshContactPoints();
                return;
            }
#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER



#if USE_SEPDISTANCE_UTIL2
            if (dispatchInfo.m_useConvexConservativeDistanceUtil)
            {
                m_sepDistance.updateSeparatingDistance(body0.getWorldTransform(), body1.getWorldTransform());
            }

            if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance() <= 0.f)
#endif //USE_SEPDISTANCE_UTIL2

            {
                ClosestPointInput input = ClosestPointInput.Default();

                using (GjkPairDetector gjkPairDetector = BulletGlobals.GjkPairDetectorPool.Get())
                {
                    gjkPairDetector.Initialize(min0, min1, m_simplexSolver, m_pdSolver);
                    //TODO: if (dispatchInfo.m_useContinuous)
                    gjkPairDetector.SetMinkowskiA(min0);
                    gjkPairDetector.SetMinkowskiB(min1);

#if USE_SEPDISTANCE_UTIL2
                    if (dispatchInfo.m_useConvexConservativeDistanceUtil)
                    {
                        input.m_maximumDistanceSquared = float.MaxValue;
                    }
                    else
#endif //USE_SEPDISTANCE_UTIL2
                    {
                        input.m_maximumDistanceSquared  = min0.GetMargin() + min1.GetMargin() + m_manifoldPtr.GetContactBreakingThreshold();
                        input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
                    }

                    //input.m_stackAlloc = dispatchInfo.m_stackAllocator;
                    input.m_transformA = body0.GetWorldTransform();
                    input.m_transformB = body1.GetWorldTransform();


                    if (min0.IsPolyhedral() && min1.IsPolyhedral())
                    {
                        DummyResult dummy = new DummyResult();


                        PolyhedralConvexShape polyhedronA = min0 as PolyhedralConvexShape;
                        PolyhedralConvexShape polyhedronB = min1 as PolyhedralConvexShape;
                        if (polyhedronA.GetConvexPolyhedron() != null && polyhedronB.GetConvexPolyhedron() != null)
                        {
                            float threshold = m_manifoldPtr.GetContactBreakingThreshold();

                            float          minDist             = float.MinValue;
                            IndexedVector3 sepNormalWorldSpace = new IndexedVector3(0, 1, 0);
                            bool           foundSepAxis        = true;

                            if (dispatchInfo.m_enableSatConvex)
                            {
                                foundSepAxis = PolyhedralContactClipping.FindSeparatingAxis(
                                    polyhedronA.GetConvexPolyhedron(), polyhedronB.GetConvexPolyhedron(),
                                    body0.GetWorldTransform(),
                                    body1.GetWorldTransform(),
                                    out sepNormalWorldSpace);
                            }
                            else
                            {
#if ZERO_MARGIN
                                gjkPairDetector.SetIgnoreMargin(true);
                                gjkPairDetector.GetClosestPoints(input, resultOut, dispatchInfo.m_debugDraw);
#else
                                gjkPairDetector.GetClosestPoints(ref input, dummy, dispatchInfo.m_debugDraw);
#endif

                                float l2 = gjkPairDetector.GetCachedSeparatingAxis().LengthSquared();
                                if (l2 > MathUtil.SIMD_EPSILON)
                                {
                                    sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis() * (1.0f / l2);
                                    //minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
                                    minDist = gjkPairDetector.GetCachedSeparatingDistance() - min0.GetMargin() - min1.GetMargin();

#if ZERO_MARGIN
                                    foundSepAxis = true;    //gjkPairDetector.getCachedSeparatingDistance()<0.f;
#else
                                    foundSepAxis = gjkPairDetector.GetCachedSeparatingDistance() < (min0.GetMargin() + min1.GetMargin());
#endif
                                }
                            }
                            if (foundSepAxis)
                            {
                                //				printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());

                                PolyhedralContactClipping.ClipHullAgainstHull(sepNormalWorldSpace, polyhedronA.GetConvexPolyhedron(), polyhedronB.GetConvexPolyhedron(),
                                                                              body0.GetWorldTransform(),
                                                                              body1.GetWorldTransform(), minDist - threshold, threshold, resultOut);
                            }
                            if (m_ownManifold)
                            {
                                resultOut.RefreshContactPoints();
                            }

                            return;
                        }
                        else
                        {
                            //we can also deal with convex versus triangle (without connectivity data)
                            if (polyhedronA.GetConvexPolyhedron() != null && polyhedronB.GetShapeType() == BroadphaseNativeTypes.TRIANGLE_SHAPE_PROXYTYPE)
                            {
                                m_vertices.Clear();
                                TriangleShape tri = polyhedronB as TriangleShape;
                                m_vertices.Add(body1.GetWorldTransform() * tri.m_vertices1[0]);
                                m_vertices.Add(body1.GetWorldTransform() * tri.m_vertices1[1]);
                                m_vertices.Add(body1.GetWorldTransform() * tri.m_vertices1[2]);

                                float          threshold           = m_manifoldPtr.GetContactBreakingThreshold();
                                IndexedVector3 sepNormalWorldSpace = new IndexedVector3(0, 1, 0);;
                                float          minDist             = float.MinValue;
                                float          maxDist             = threshold;

                                bool foundSepAxis = false;
                                if (false)
                                {
                                    polyhedronB.InitializePolyhedralFeatures();
                                    foundSepAxis = PolyhedralContactClipping.FindSeparatingAxis(
                                        polyhedronA.GetConvexPolyhedron(), polyhedronB.GetConvexPolyhedron(),
                                        body0.GetWorldTransform(),
                                        body1.GetWorldTransform(),
                                        out sepNormalWorldSpace);
                                    //	 printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
                                }
                                else
                                {
#if ZERO_MARGIN
                                    gjkPairDetector.SetIgnoreMargin(true);
                                    gjkPairDetector.GetClosestPoints(input, resultOut, dispatchInfo.m_debugDraw);
#else
                                    gjkPairDetector.GetClosestPoints(ref input, dummy, dispatchInfo.m_debugDraw);
#endif//ZERO_MARGIN

                                    float l2 = gjkPairDetector.GetCachedSeparatingAxis().LengthSquared();
                                    if (l2 > MathUtil.SIMD_EPSILON)
                                    {
                                        sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis() * (1.0f / l2);
                                        //minDist = gjkPairDetector.getCachedSeparatingDistance();
                                        //maxDist = threshold;
                                        minDist      = gjkPairDetector.GetCachedSeparatingDistance() - min0.GetMargin() - min1.GetMargin();
                                        foundSepAxis = true;
                                    }
                                }


                                if (foundSepAxis)
                                {
                                    PolyhedralContactClipping.ClipFaceAgainstHull(sepNormalWorldSpace, polyhedronA.GetConvexPolyhedron(),
                                                                                  body0.GetWorldTransform(), m_vertices, minDist - threshold, maxDist, resultOut);
                                }

                                if (m_ownManifold)
                                {
                                    resultOut.RefreshContactPoints();
                                }
                                return;
                            }
                        }
                    }


                    gjkPairDetector.GetClosestPoints(ref input, resultOut, dispatchInfo.getDebugDraw(), false);
#if USE_SEPDISTANCE_UTIL2
                    float sepDist = 0.f;
                    if (dispatchInfo.m_useConvexConservativeDistanceUtil)
                    {
                        sepDist = gjkPairDetector.getCachedSeparatingDistance();
                        if (sepDist > MathUtil.SIMD_EPSILON)
                        {
                            sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
                            //now perturbe directions to get multiple contact points
                        }
                    }
#endif //USE_SEPDISTANCE_UTIL2

                    //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects

                    //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
                    if (m_numPerturbationIterations > 0 && resultOut.GetPersistentManifold().GetNumContacts() < m_minimumPointsPerturbationThreshold)
                    {
                        IndexedVector3 v0, v1;

                        IndexedVector3 sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis();
                        sepNormalWorldSpace.Normalize();
                        TransformUtil.PlaneSpace1(ref sepNormalWorldSpace, out v0, out v1);

                        bool        perturbeA  = true;
                        const float angleLimit = 0.125f * MathUtil.SIMD_PI;
                        float       perturbeAngle;
                        float       radiusA = min0.GetAngularMotionDisc();
                        float       radiusB = min1.GetAngularMotionDisc();
                        if (radiusA < radiusB)
                        {
                            perturbeAngle = BulletGlobals.gContactBreakingThreshold / radiusA;
                            perturbeA     = true;
                        }
                        else
                        {
                            perturbeAngle = BulletGlobals.gContactBreakingThreshold / radiusB;
                            perturbeA     = false;
                        }
                        if (perturbeAngle > angleLimit)
                        {
                            perturbeAngle = angleLimit;
                        }

                        IndexedMatrix unPerturbedTransform;
                        if (perturbeA)
                        {
                            unPerturbedTransform = input.m_transformA;
                        }
                        else
                        {
                            unPerturbedTransform = input.m_transformB;
                        }

                        for (int i = 0; i < m_numPerturbationIterations; i++)
                        {
                            if (v0.LengthSquared() > MathUtil.SIMD_EPSILON)
                            {
                                IndexedQuaternion perturbeRot    = new IndexedQuaternion(v0, perturbeAngle);
                                float             iterationAngle = i * (MathUtil.SIMD_2_PI / (float)m_numPerturbationIterations);
                                IndexedQuaternion rotq           = new IndexedQuaternion(sepNormalWorldSpace, iterationAngle);

                                if (perturbeA)
                                {
                                    input.m_transformA._basis = (new IndexedBasisMatrix(MathUtil.QuaternionInverse(rotq) * perturbeRot * rotq) * body0.GetWorldTransform()._basis);
                                    input.m_transformB        = body1.GetWorldTransform();

                                    input.m_transformB = body1.GetWorldTransform();
#if DEBUG_CONTACTS
                                    dispatchInfo.m_debugDraw.DrawTransform(ref input.m_transformA, 10.0f);
#endif //DEBUG_CONTACTS
                                }
                                else
                                {
                                    input.m_transformA        = body0.GetWorldTransform();
                                    input.m_transformB._basis = (new IndexedBasisMatrix(MathUtil.QuaternionInverse(rotq) * perturbeRot * rotq) * body1.GetWorldTransform()._basis);
#if DEBUG_CONTACTS
                                    dispatchInfo.m_debugDraw.DrawTransform(ref input.m_transformB, 10.0f);
#endif
                                }

                                PerturbedContactResult perturbedResultOut = new PerturbedContactResult(resultOut, ref input.m_transformA, ref input.m_transformB, ref unPerturbedTransform, perturbeA, dispatchInfo.getDebugDraw());
                                gjkPairDetector.GetClosestPoints(ref input, perturbedResultOut, dispatchInfo.getDebugDraw(), false);
                            }
                        }
                    }



#if USE_SEPDISTANCE_UTIL2
                    if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist > MathUtil.SIMD_EPSILON))
                    {
                        m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(), sepDist, body0.getWorldTransform(), body1.getWorldTransform());
                    }
#endif //USE_SEPDISTANCE_UTIL2
                }
            }

            if (m_ownManifold)
            {
                resultOut.RefreshContactPoints();
            }
        }
        public void ComputeClosestPoints(ref IndexedMatrix transA, ref IndexedMatrix transB, PointCollector pointCollector)
        {
            if (m_convexB1 != null)
            {
                m_simplexSolver.Reset();
                GjkPairDetector gjk = new GjkPairDetector(m_convexA, m_convexB1, m_convexA.GetShapeType(), m_convexB1.GetShapeType(), m_convexA.GetMargin(), m_convexB1.GetMargin(), m_simplexSolver, m_penetrationDepthSolver);
                ClosestPointInput input = ClosestPointInput.Default();
                input.m_transformA = transA;
                input.m_transformB = transB;
                gjk.GetClosestPoints(ref input, pointCollector, null);
            }
            else
            {
                //convex versus plane
                ConvexShape convexShape = m_convexA;
                StaticPlaneShape planeShape = m_planeShape;

                bool hasCollision = false;
                IndexedVector3 planeNormal = planeShape.GetPlaneNormal();
                float planeConstant = planeShape.GetPlaneConstant();

                IndexedMatrix convexWorldTransform = transA;
                IndexedMatrix convexInPlaneTrans = transB.Inverse() * convexWorldTransform;
                IndexedMatrix planeInConvex = convexWorldTransform.Inverse() *  transB;

                IndexedVector3 vtx = convexShape.LocalGetSupportingVertex(planeInConvex._basis * -planeNormal);

                IndexedVector3 vtxInPlane = convexInPlaneTrans * vtx;
                float distance = IndexedVector3.Dot(planeNormal, vtxInPlane) - planeConstant;

                IndexedVector3 vtxInPlaneProjected = vtxInPlane - distance * planeNormal;
                IndexedVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected;
                IndexedVector3 normalOnSurfaceB = transB._basis * planeNormal;

                pointCollector.AddContactPoint(
                    ref normalOnSurfaceB,
                    ref vtxInPlaneWorld,
                    distance);
            }

        }