public bool calcPenDepth(ISimplexSolver simplexSolver, ConvexShape pConvexA, ConvexShape pConvexB, btTransform transformA, btTransform transformB, ref btVector3 v, out btVector3 wWitnessOnA, out btVector3 wWitnessOnB, IDebugDraw debugDraw)
        {
            btVector3 guessVector;// = transformA.Origin - transformB.Origin;
            btVector3.Subtract(ref transformA.Origin,ref transformB.Origin, out guessVector);
            GjkEpaSolver2.sResults results = new GjkEpaSolver2.sResults();

            
            if (GjkEpaSolver2.Penetration(pConvexA, transformA,
                                        pConvexB, transformB,
                                        guessVector, ref results))
            {
                //	debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
                //resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);
                wWitnessOnA = results.witnesses0;
                wWitnessOnB = results.witnesses1;
                v = results.normal;
                return true;
            }
            else
            {
                if (GjkEpaSolver2.Distance(pConvexA, transformA, pConvexB, transformB, guessVector, ref results))
                {
                    wWitnessOnA = results.witnesses0;
                    wWitnessOnB = results.witnesses1;
                    v = results.normal;
                    return false;
                }
            }
            wWitnessOnA = new btVector3();
            wWitnessOnB = new btVector3();
            return false;
            
        }
Exemple #2
0
        public PerturbedContactResult(/*ManifoldResult* originalResult,*/ btTransform transformA, btTransform transformB, btTransform unPerturbedTransform, bool perturbA, IDebugDraw debugDrawer)
        {
            //m_originalManifoldResult = originalResult;
            m_transformA = transformA;
            m_transformB = transformB;
            m_unPerturbedTransform = unPerturbedTransform;
            m_perturbA = perturbA;
            m_debugDrawer = debugDrawer;

        }
Exemple #3
0
 public CollisionWorld(IDispatcher dispatcher, IBroadphaseInterface pairCache, ICollisionConfiguration collisionConfiguration)
 {
     m_dispatcher1 = dispatcher;
     m_broadphasePairCache = pairCache;
     m_debugDrawer = null;
     m_forceUpdateAllAabbs = true;
     //メモリ確保系?
     //m_stackAlloc = collisionConfiguration->getStackAllocator();
     //m_dispatchInfo.m_stackAllocator = m_stackAlloc;
 }
Exemple #4
0
 //メモリ確保系?
 //btStackAlloc* m_stackAllocator;
 public DispatcherInfo()
 {
     m_timeStep = 0f;
     m_stepCount = 0;
     m_dispatchFunc = DispatchFunc.DISPATCH_DISCRETE;
     m_timeOfImpact = 1f;
     m_useContinuous = false;
     m_debugDraw = null;
     m_enableSatConvex = false;
     m_enableSPU = true;
     m_useEpa = true;
     m_allowedCcdPenetration = 0.04f;
     m_useConvexConservativeDistanceUtil = false;
     m_convexConservativeDistanceThreshold = 0.0f;
 }
Exemple #5
0
        public void getClosestPoints(ref ClosestPointInput input, ref ManifoldResult output, IDebugDraw debugDraw)
        {

            //float* R1 = stackalloc float[12];
            //float* R2 = stackalloc float[12];
            StackPtr<float> R1 = StackPtr<float>.Allocate(12);
            StackPtr<float> R2 = StackPtr<float>.Allocate(12);

            try
            {
                for (int j = 0; j < 3; j++)
                {
                    R1[0 + 4 * j] = input.m_transformA.Basis[j].X;
                    R2[0 + 4 * j] = input.m_transformB.Basis[j].X;

                    R1[1 + 4 * j] = input.m_transformA.Basis[j].Y;
                    R2[1 + 4 * j] = input.m_transformB.Basis[j].Y;


                    R1[2 + 4 * j] = input.m_transformA.Basis[j].Z;
                    R2[2 + 4 * j] = input.m_transformB.Basis[j].Z;

                }



                btVector3 normal;
                float depth;
                int return_code;
                int maxc = 4;

                dBoxBox2(input.m_transformA.Origin,
                R1,
                m_box1.HalfExtentsWithMargin * 2f,
                input.m_transformB.Origin,
                R2,
                m_box2.HalfExtentsWithMargin * 2f,
                out normal, out depth, out return_code,
                maxc,
                ref output
                );
            }
            finally
            {
                R1.Dispose();
                R2.Dispose();
            }
        }
 public void Constructor(
     ContactSolverInfo solverInfo,
     IConstraintSolver solver,
     IList<TypedConstraint> sortedConstraints,
     int numConstraints,
     IDebugDraw debugDrawer,
     //btStackAlloc*			stackAlloc,
     IDispatcher dispatcher)
 {
     m_solverInfo = solverInfo;
     m_solver = solver;
     m_sortedConstraints = sortedConstraints;
     m_numConstraints = numConstraints;
     m_debugDrawer = debugDrawer;
     //m_stackAlloc(stackAlloc),
     m_dispatcher = dispatcher;
     m_bodies.Clear();
     m_manifolds.Clear();
     m_constraints.Clear();
 }
Exemple #7
0
 public virtual void allSolved(ContactSolverInfo info, IDebugDraw debugDrawer) { }
Exemple #8
0
 //solve a group of constraints
 public abstract float solveGroup(IList<CollisionObject> bodies, IList<PersistentManifold> manifold, IList<TypedConstraint> constraints, ContactSolverInfo info, IDebugDraw debugDrawer, IDispatcher dispatcher);
Exemple #9
0
 public abstract void debugDraw(IDebugDraw debugDrawer);
Exemple #10
0
        public void getClosestPoints(ref ClosestPointInput input, ref PerturbedContactResult output, ref ManifoldResult originalManifoldResult, IDebugDraw debugDraw)
        {
            m_cachedSeparatingDistance = 0f;

            float distance = 0f;
            btVector3 normalInB = new btVector3(0f, 0f, 0f);
            btVector3 pointOnA, pointOnB = btVector3.Zero;
            btTransform localTransA = input.m_transformA;
            btTransform localTransB = input.m_transformB;
            btVector3 positionOffset;// = (localTransA.Origin + localTransB.Origin) * 0.5f;
            {
                btVector3 temp;
                btVector3.Add(ref localTransA.Origin, ref localTransB.Origin, out temp);
                btVector3.Multiply(ref temp, 0.5f, out positionOffset);
            }
            localTransA.Origin -= positionOffset;
            localTransB.Origin -= positionOffset;

            bool check2d = m_minkowskiA.isConvex2d && m_minkowskiB.isConvex2d;

            float marginA = m_marginA;
            float marginB = m_marginB;

            //gNumGjkChecks++;
            //for CCD we don't use margins
            if (m_ignoreMargin)
            {
                marginA = 0f;
                marginB = 0f;

            }

            m_curIter = 0;
            int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
            m_cachedSeparatingAxis.setValue(0, 1, 0);

            bool isValid = false;
            bool checkSimplex = false;
            bool checkPenetration = true;
            m_degenerateSimplex = 0;

            m_lastUsedMethod = -1;

            {
                float squaredDistance = BulletGlobal.BT_LARGE_FLOAT;
                float delta = 0f;

                float margin = marginA + marginB;



                m_simplexSolver.reset();

                for (; ; )
                //while (true)
                {

                    btVector3 seperatingAxisInA;// = (-m_cachedSeparatingAxis) * input.m_transformA.Basis;
                    {
                        btVector3 temp = -m_cachedSeparatingAxis;
                        btMatrix3x3.Multiply(ref temp, ref input.m_transformA.Basis, out seperatingAxisInA);
                    }
                    btVector3 seperatingAxisInB;// = m_cachedSeparatingAxis * input.m_transformB.Basis;
                    btMatrix3x3.Multiply(ref m_cachedSeparatingAxis, ref input.m_transformB.Basis, out seperatingAxisInB);

                    btVector3 pInA;// = m_minkowskiA.localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
                    m_minkowskiA.localGetSupportVertexWithoutMarginNonVirtual(ref seperatingAxisInA, out pInA);
                    btVector3 qInB;// = m_minkowskiB.localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
                    m_minkowskiB.localGetSupportVertexWithoutMarginNonVirtual(ref seperatingAxisInB, out qInB);

                    btVector3 pWorld = btVector3.Transform(pInA, localTransA);
                    btVector3 qWorld = btVector3.Transform(qInB, localTransB);

                    if (check2d)
                    {
                        pWorld.Z = 0f;
                        qWorld.Z = 0f;
                    }

                    btVector3 w = pWorld - qWorld;
                    delta = m_cachedSeparatingAxis.dot(w);

                    // potential exit, they don't overlap
                    if ((delta > 0.0f) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
                    {
                        m_degenerateSimplex = 10;
                        checkSimplex = true;
                        //checkPenetration = false;
                        break;
                    }

                    //exit 0: the new point is already in the simplex, or we didn't come any closer
                    if (m_simplexSolver.inSimplex(w))
                    {
                        m_degenerateSimplex = 1;
                        checkSimplex = true;
                        break;
                    }
                    // are we getting any closer ?
                    float f0 = squaredDistance - delta;
                    float f1 = squaredDistance * REL_ERROR2;

                    if (f0 <= f1)
                    {
                        if (f0 <= 0f)
                        {
                            m_degenerateSimplex = 2;
                        }
                        else
                        {
                            m_degenerateSimplex = 11;
                        }
                        checkSimplex = true;
                        break;
                    }
                    //add current vertex to simplex
                    m_simplexSolver.addVertex(w, pWorld, qWorld);

                    btVector3 newCachedSeparatingAxis;

                    //calculate the closest point to the origin (update vector v)
                    if (!m_simplexSolver.closest(out newCachedSeparatingAxis))
                    {
                        m_degenerateSimplex = 3;
                        checkSimplex = true;
                        break;
                    }

                    if (newCachedSeparatingAxis.Length2 < REL_ERROR2)
                    {
                        m_cachedSeparatingAxis = newCachedSeparatingAxis;
                        m_degenerateSimplex = 6;
                        checkSimplex = true;
                        break;
                    }

                    float previousSquaredDistance = squaredDistance;
                    squaredDistance = newCachedSeparatingAxis.Length2;

                    m_cachedSeparatingAxis = newCachedSeparatingAxis;

                    //redundant m_simplexSolver->compute_points(pointOnA, pointOnB);

                    //are we getting any closer ?
                    if (previousSquaredDistance - squaredDistance <= BulletGlobal.SIMD_EPSILON * previousSquaredDistance)
                    {
                        m_simplexSolver.backup_closest(ref m_cachedSeparatingAxis);
                        checkSimplex = true;
                        m_degenerateSimplex = 12;

                        break;
                    }

                    //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject   
                    if (m_curIter++ > gGjkMaxIter)
                    {
                        /*#if defined(DEBUG) || defined (_DEBUG) || defined (DEBUG_SPU_COLLISION_DETECTION)

                                printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter);   
                                printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",   
                                m_cachedSeparatingAxis.getX(),   
                                m_cachedSeparatingAxis.getY(),   
                                m_cachedSeparatingAxis.getZ(),   
                                squaredDistance,   
                                m_minkowskiA->getShapeType(),   
                                m_minkowskiB->getShapeType());   

                        #endif   */
                        break;

                    }


                    bool check = (!m_simplexSolver.fullSimplex);
                    //bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());

                    if (!check)
                    {
                        //do we need this backup_closest here ?
                        m_simplexSolver.backup_closest(ref m_cachedSeparatingAxis);
                        m_degenerateSimplex = 13;
                        break;
                    }
                }

                if (checkSimplex)
                {
                    m_simplexSolver.compute_points(out pointOnA, out pointOnB);
                    normalInB = pointOnA - pointOnB;
                    float lenSqr = m_cachedSeparatingAxis.Length2;

                    //valid normal
                    if (lenSqr < 0.0001)
                    {
                        m_degenerateSimplex = 5;
                    }
                    if (lenSqr > BulletGlobal.SIMD_EPSILON * BulletGlobal.SIMD_EPSILON)
                    {
                        float rlen = 1f / (float)Math.Sqrt(lenSqr);
                        normalInB *= rlen; //normalize
                        float s = (float)Math.Sqrt(squaredDistance);

                        Debug.Assert(s > 0.0f);
                        pointOnA -= m_cachedSeparatingAxis * (marginA / s);
                        pointOnB += m_cachedSeparatingAxis * (marginB / s);
                        distance = ((1f / rlen) - margin);
                        isValid = true;

                        m_lastUsedMethod = 1;
                    }
                    else
                    {
                        m_lastUsedMethod = 2;
                    }
                }

                bool catchDegeneratePenetrationCase =
                    (m_catchDegeneracies != 0 && m_penetrationDepthSolver != null && m_degenerateSimplex != 0 && ((distance + margin) < 0.01));

                //if (checkPenetration && !isValid)
                if (checkPenetration && (!isValid || catchDegeneratePenetrationCase))
                {
                    //penetration case

                    //if there is no way to handle penetrations, bail out
                    if (m_penetrationDepthSolver != null)
                    {
                        // Penetration depth case.
                        btVector3 tmpPointOnA, tmpPointOnB;

                        //gNumDeepPenetrationChecks++;
                        m_cachedSeparatingAxis.setZero();

                        bool isValid2 = m_penetrationDepthSolver.calcPenDepth(
                            m_simplexSolver,
                            m_minkowskiA, m_minkowskiB,
                            localTransA, localTransB,
                            ref m_cachedSeparatingAxis, out tmpPointOnA, out tmpPointOnB,
                            debugDraw//, input.m_stackAlloc
                            );


                        if (isValid2)
                        {
                            btVector3 tmpNormalInB = tmpPointOnB - tmpPointOnA;
                            float lenSqr = tmpNormalInB.Length2;
                            if (lenSqr <= (BulletGlobal.SIMD_EPSILON * BulletGlobal.SIMD_EPSILON))
                            {
                                tmpNormalInB = m_cachedSeparatingAxis;
                                lenSqr = m_cachedSeparatingAxis.Length2;
                            }

                            if (lenSqr > (BulletGlobal.SIMD_EPSILON * BulletGlobal.SIMD_EPSILON))
                            {
                                tmpNormalInB /= (float)Math.Sqrt(lenSqr);
                                float distance2 = -(tmpPointOnA - tmpPointOnB).Length;
                                //only replace valid penetrations when the result is deeper (check)
                                if (!isValid || (distance2 < distance))
                                {
                                    distance = distance2;
                                    pointOnA = tmpPointOnA;
                                    pointOnB = tmpPointOnB;
                                    normalInB = tmpNormalInB;
                                    isValid = true;
                                    m_lastUsedMethod = 3;
                                }
                                else
                                {
                                    m_lastUsedMethod = 8;
                                }
                            }
                            else
                            {
                                m_lastUsedMethod = 9;
                            }
                        }
                        else
                        {
                            ///this is another degenerate case, where the initial GJK calculation reports a degenerate case
                            ///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
                            ///reports a valid positive distance. Use the results of the second GJK instead of failing.
                            ///thanks to Jacob.Langford for the reproduction case
                            ///http://code.google.com/p/bullet/issues/detail?id=250


                            if (m_cachedSeparatingAxis.Length2 > 0f)
                            {
                                float distance2 = (tmpPointOnA - tmpPointOnB).Length - margin;
                                //only replace valid distances when the distance is less
                                if (!isValid || (distance2 < distance))
                                {
                                    distance = distance2;
                                    pointOnA = tmpPointOnA;
                                    pointOnB = tmpPointOnB;
                                    pointOnA -= m_cachedSeparatingAxis * marginA;
                                    pointOnB += m_cachedSeparatingAxis * marginB;
                                    normalInB = m_cachedSeparatingAxis;
                                    normalInB.normalize();
                                    isValid = true;
                                    m_lastUsedMethod = 6;
                                }
                                else
                                {
                                    m_lastUsedMethod = 5;
                                }
                            }
                        }

                    }

                }
            }



            if (isValid && ((distance < 0) || (distance * distance < input.m_maximumDistanceSquared)))
            {

                m_cachedSeparatingAxis = normalInB;
                m_cachedSeparatingDistance = distance;

                output.addContactPoint(
                    normalInB,
                    pointOnB + positionOffset,
                    distance, ref originalManifoldResult);

            }


        }