Exemple #1
0
        static public b2VelocityConstraintPoint Create()
        {
            var vcp = new b2VelocityConstraintPoint();

            vcp.Defaults();
            return(vcp);
        }
Exemple #2
0
 public void Defaults()
 {
     points = new b2VelocityConstraintPoint[2] {
         new b2VelocityConstraintPoint(), new b2VelocityConstraintPoint()
     };
     normal = b2Vec2.Zero;
 }
Exemple #3
0
        public virtual void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < m_count; ++i)
            {
                b2ContactVelocityConstraint vc = m_velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.pointCount;

                b2Vec2 vA = m_velocities[indexA].v;
                float  wA = m_velocities[indexA].w;
                b2Vec2 vB = m_velocities[indexB].v;
                float  wB = m_velocities[indexB].w;

                b2Vec2 normal  = vc.normal;
                b2Vec2 tangent = normal.UnitCross(); //  b2Math.b2Cross(normal, 1.0f);

                for (int j = 0; j < pointCount; ++j)
                {
                    b2VelocityConstraintPoint vcp = vc.points[j];
                    b2Vec2 P = vcp.normalImpulse * normal + vcp.tangentImpulse * tangent;
                    wA -= iA * b2Math.b2Cross(ref vcp.rA, ref P);
                    vA -= mA * P;
                    wB += iB * b2Math.b2Cross(ref vcp.rB, ref P);
                    vB += mB * P;
                }

                m_velocities[indexA].v = vA;
                m_velocities[indexA].w = wA;
                m_velocities[indexB].v = vB;
                m_velocities[indexB].w = wB;
            }
        }
 public static b2VelocityConstraintPoint Create()
 {
     var vcp = new b2VelocityConstraintPoint();
     vcp.Defaults();
     return vcp;
 }
Exemple #5
0
        public virtual void SolveVelocityConstraints()
        {
            for (int i = 0; i < m_count; ++i)
            {
                b2ContactVelocityConstraint vc = m_velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.pointCount;

                b2Vec2 vA = m_velocities[indexA].v;
                float  wA = m_velocities[indexA].w;
                b2Vec2 vB = m_velocities[indexB].v;
                float  wB = m_velocities[indexB].w;

                b2Vec2 normal   = vc.normal;
                b2Vec2 tangent  = normal.UnitCross(); // b2Math.b2Cross(normal, 1.0f);
                float  friction = vc.friction;

                Debug.Assert(pointCount == 1 || pointCount == 2);

                // Solve tangent constraints first because non-penetration is more important
                // than friction.
                for (int j = 0; j < pointCount; ++j)
                {
                    b2VelocityConstraintPoint vcp = vc.points[j];

                    // Relative velocity at contact

                    /*
                     *  b.m_x = -s * a.m_y;
                     *  b.m_y = s * a.m_x;
                     */

                    // b2Vec2 dv = vB + b2Math.b2Cross(wB, ref vcp.rB) - vA - b2Math.b2Cross(wA, ref vcp.rA);
                    b2Vec2 dv;
                    dv.x = vB.x + (-wB * vcp.rB.y) - vA.x - (-wA * vcp.rA.y);
                    dv.y = vB.y + (wB * vcp.rB.x) - vA.y - (wA * vcp.rA.x);

                    // Compute tangent force
                    float vt     = dv.x * tangent.x + dv.y * tangent.y; // b2Math.b2Dot(dv, tangent);
                    float lambda = vcp.tangentMass * (-vt);

                    // b2Math.b2Clamp the accumulated force
                    float maxFriction = friction * vcp.normalImpulse;
                    float newImpulse  = b2Math.b2Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda             = newImpulse - vcp.tangentImpulse;
                    vcp.tangentImpulse = newImpulse;

                    // Apply contact impulse
                    // P = lambda * tangent;
                    b2Vec2 P;
                    P.x = lambda * tangent.x;
                    P.y = lambda * tangent.y;

                    // vA -= mA * P;
                    vA.x -= mA * P.x;
                    vA.y -= mA * P.y;

                    // wA -= iA * b2Math.b2Cross(vcp.rA, P);
                    wA -= iA * (vcp.rA.x * P.y - vcp.rA.y * P.x);

                    // vB += mB * P;
                    vB.x += mB * P.x;
                    vB.y += mB * P.y;

                    // wB += iB * b2Math.b2Cross(vcp.rB, P);
                    wB += iB * (vcp.rB.x * P.y - vcp.rB.y * P.x);

                    //vc.points[j] = vcp;
                }

                // Solve normal constraints
                if (vc.pointCount == 1)
                {
                    b2VelocityConstraintPoint vcp = vc.points[0];

                    // Relative velocity at contact
                    // b2Vec2 dv = vB + b2Math.b2Cross(wB, ref vcp.rB) - vA - b2Math.b2Cross(wA, ref vcp.rA);
                    b2Vec2 dv;
                    dv.x = vB.x + (-wB * vcp.rB.y) - vA.x - (-wA * vcp.rA.y);
                    dv.y = vB.y + (wB * vcp.rB.x) - vA.y - (wA * vcp.rA.x);

                    // Compute normal impulse
                    float vn     = dv.x * normal.x + dv.y * normal.y; //b2Math.b2Dot(ref dv, ref normal);
                    float lambda = -vcp.normalMass * (vn - vcp.velocityBias);

                    // b2Math.b2Clamp the accumulated impulse
                    float newImpulse = Math.Max(vcp.normalImpulse + lambda, 0.0f);
                    lambda            = newImpulse - vcp.normalImpulse;
                    vcp.normalImpulse = newImpulse;

                    // Apply contact impulse
                    //b2Vec2 P = lambda * normal;
                    b2Vec2 P;
                    P.x = lambda * normal.x;
                    P.y = lambda * normal.y;

                    // vA -= mA * P;
                    vA.x -= mA * P.x;
                    vA.y -= mA * P.y;

                    // wA -= iA * b2Math.b2Cross(vcp.rA, P);
                    wA -= iA * (vcp.rA.x * P.y - vcp.rA.y * P.x);

                    // vB += mB * P;
                    vB.x += mB * P.x;
                    vB.y += mB * P.y;

                    // wB += iB * b2Math.b2Cross(vcp.rB, P);
                    wB += iB * (vcp.rB.x * P.y - vcp.rB.y * P.x);

                    //vc.points[0] = vcp;
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = a + d
                    //
                    // a := old total impulse
                    // x := new total impulse
                    // d := incremental impulse
                    //
                    // For the current iteration we extend the formula for the incremental impulse
                    // to compute the new total impulse:
                    //
                    // vn = A * d + b
                    //    = A * (x - a) + b
                    //    = A * x + b - A * a
                    //    = A * x + b'
                    // b' = b - A * a;

                    b2VelocityConstraintPoint cp1 = vc.points[0];
                    b2VelocityConstraintPoint cp2 = vc.points[1];

                    b2Vec2 a = new b2Vec2(cp1.normalImpulse, cp2.normalImpulse);
                    Debug.Assert(a.x >= 0.0f && a.y >= 0.0f);

                    // Relative velocity at contact
                    // vB + b2Math.b2Cross(wB, ref cp1.rB) - vA - b2Math.b2Cross(wA, ref cp1.rA);
                    b2Vec2 dv1;
                    dv1.x = vB.x + (-wB * cp1.rB.y) - vA.x - (-wA * cp1.rA.y);
                    dv1.y = vB.y + (wB * cp1.rB.x) - vA.y - (wA * cp1.rA.x);

                    // vB + b2Math.b2Cross(wB, ref cp2.rB) - vA - b2Math.b2Cross(wA, ref cp2.rA);
                    b2Vec2 dv2;
                    dv2.x = vB.x + (-wB * cp2.rB.y) - vA.x - (-wA * cp2.rA.y);
                    dv2.y = vB.y + (wB * cp2.rB.x) - vA.y - (wA * cp2.rA.x);

                    // Compute normal velocity
                    float vn1 = dv1.x * normal.x + dv1.y * normal.y; // b2Math.b2Dot(ref dv1, ref normal);
                    float vn2 = dv2.x * normal.x + dv2.y * normal.y; // b2Math.b2Dot(ref dv2, ref normal);

                    b2Vec2 b;
                    b.x = vn1 - cp1.velocityBias;
                    b.y = vn2 - cp2.velocityBias;

                    // Compute b'
                    // (A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y)
                    b.x -= (vc.K.ex.x * a.x + vc.K.ey.x * a.y);
                    b.y -= (vc.K.ex.y * a.x + vc.K.ey.y * a.y);
                    // b -= b2Math.b2Mul(vc.K, a);

                    //            float k_errorTol = 1e-3f;
                    #region Iteration
                    while (true)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x + b'
                        //
                        // Solve for x:
                        //
                        // x = - inv(A) * b'
                        //
                        b2Vec2 x = -b2Math.b2Mul(ref vc.normalMass, ref b);

                        if (x.x >= 0.0f && x.y >= 0.0f)
                        {
                            // Get the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + b2Math.b2Cross(wB, cp1.rB) - vA - b2Math.b2Cross(wA, cp1.rA);
                            dv2 = vB + b2Math.b2Cross(wB, cp2.rB) - vA - b2Math.b2Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn1 = b2Math.b2Dot(dv1, normal);
                            vn2 = b2Math.b2Dot(dv2, normal);

                            Debug.Assert(b2Abs(vn1 - cp1.velocityBias) < k_errorTol);
                            Debug.Assert(b2Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1 + a12 * 0 + b1'
                        // vn2 = a21 * x1 + a22 * 0 + b2'
                        //
                        x.x = -cp1.normalMass * b.x;
                        x.y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = vc.K.ex.y * x.x + b.y;

                        if (x.x >= 0.0f && vn2 >= 0.0f)
                        {
                            // Get the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + b2Math.b2Cross(wB, cp1.rB) - vA - b2Math.b2Cross(wA, cp1.rA);

                            // Compute normal velocity
                            vn1 = b2Math.b2Dot(dv1, normal);

                            Debug.Assert(b2Abs(vn1 - cp1.velocityBias) < k_errorTol);
#endif
                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2 + b1'
                        //   0 = a21 * 0 + a22 * x2 + b2'
                        //
                        x.x = 0.0f;
                        x.y = -cp2.normalMass * b.y;
                        vn1 = vc.K.ey.x * x.y + b.x;
                        vn2 = 0.0f;

                        if (x.y >= 0.0f && vn1 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv2 = vB + b2Math.b2Cross(wB, cp2.rB) - vA - b2Math.b2Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn2 = b2Math.b2Dot(dv2, normal);

                            Debug.Assert(b2Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        x.x = 0.0f;
                        x.y = 0.0f;
                        vn1 = b.x;
                        vn2 = b.y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

                            break;
                        }


                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                    #endregion

                    //vc.points[0] = cp1;
                    //vc.points[1] = cp2;
                }

                m_velocities[indexA].v = vA;
                m_velocities[indexA].w = wA;
                m_velocities[indexB].v = vB;
                m_velocities[indexB].w = wB;

                //m_velocityConstraints[i] = vc;
            }
        }
Exemple #6
0
        // Initialize position dependent portions of the velocity constraints.
        public virtual void InitializeVelocityConstraints()
        {
            for (int i = 0; i < m_count; ++i)
            {
                b2ContactVelocityConstraint vc = m_velocityConstraints[i];
                b2ContactPositionConstraint pc = m_positionConstraints[i];

                float      radiusA  = pc.radiusA;
                float      radiusB  = pc.radiusB;
                b2Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

                int indexA = vc.indexA;
                int indexB = vc.indexB;

                float  mA           = vc.invMassA;
                float  mB           = vc.invMassB;
                float  iA           = vc.invIA;
                float  iB           = vc.invIB;
                b2Vec2 localCenterA = pc.localCenterA;
                b2Vec2 localCenterB = pc.localCenterB;

                b2Vec2 cA = m_positions[indexA].c;
                float  aA = m_positions[indexA].a;
                b2Vec2 vA = m_velocities[indexA].v;
                float  wA = m_velocities[indexA].w;

                b2Vec2 cB = m_positions[indexB].c;
                float  aB = m_positions[indexB].a;
                b2Vec2 vB = m_velocities[indexB].v;
                float  wB = m_velocities[indexB].w;

                Debug.Assert(manifold.pointCount > 0);

                b2Transform xfA = b2Transform.Identity, xfB = b2Transform.Identity;
                xfA.q.Set(aA);
                xfB.q.Set(aB);
                xfA.p = cA - b2Math.b2Mul(ref xfA.q, ref localCenterA);
                xfB.p = cB - b2Math.b2Mul(ref xfB.q, ref localCenterB);

                b2WorldManifold worldManifold = new b2WorldManifold();
                worldManifold.Initialize(ref manifold, xfA, radiusA, xfB, radiusB);

                vc.normal = worldManifold.normal;

                int pointCount = vc.pointCount;
                for (int j = 0; j < pointCount; ++j)
                {
                    b2VelocityConstraintPoint vcp = vc.points[j];

                    vcp.rA = worldManifold.points[j] - cA;
                    vcp.rB = worldManifold.points[j] - cB;

                    float rnA = b2Math.b2Cross(ref vcp.rA, ref vc.normal);
                    float rnB = b2Math.b2Cross(ref vcp.rB, ref vc.normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    b2Vec2 tangent = vc.normal.UnitCross(); //  b2Math.b2Cross(vc.normal, 1.0f);

                    float rtA = b2Math.b2Cross(ref vcp.rA, ref tangent);
                    float rtB = b2Math.b2Cross(ref vcp.rB, ref tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.velocityBias = 0.0f;
                    float vRel = b2Math.b2Dot(vc.normal, vB + b2Math.b2Cross(wB, ref vcp.rB) - vA - b2Math.b2Cross(wA, ref vcp.rA));
                    if (vRel < -b2Settings.b2_velocityThreshold)
                    {
                        vcp.velocityBias = -vc.restitution * vRel;
                    }

                    //vc.points[j] = vcp;
                }

                // If we have two points, then prepare the block solver.
                if (vc.pointCount == 2)
                {
                    b2VelocityConstraintPoint vcp1 = vc.points[0];
                    b2VelocityConstraintPoint vcp2 = vc.points[1];

                    float rn1A = b2Math.b2Cross(ref vcp1.rA, ref vc.normal);
                    float rn1B = b2Math.b2Cross(ref vcp1.rB, ref vc.normal);
                    float rn2A = b2Math.b2Cross(ref vcp2.rA, ref vc.normal);
                    float rn2B = b2Math.b2Cross(ref vcp2.rB, ref vc.normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.ex.Set(k11, k12);
                        vc.K.ey.Set(k12, k22);
                        vc.normalMass = vc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.pointCount = 1;
                    }
                }

                //m_positionConstraints[i] = pc;
                //m_velocityConstraints[i] = vc;
            }
        }
Exemple #7
0
        public b2ContactSolver(b2ContactSolverDef def)
        {
            m_step  = def.step;
            m_count = def.count;
            m_positionConstraints = new b2ContactPositionConstraint[m_count];
            for (int pc = 0; pc < m_count; pc++)
            {
                m_positionConstraints[pc] = b2ContactPositionConstraint.Create();
            }

            m_velocityConstraints = new b2ContactVelocityConstraint[m_count];
            for (int vc = 0; vc < m_count; vc++)
            {
                m_velocityConstraints[vc] = b2ContactVelocityConstraint.Create();
            }

            m_positions  = def.positions;
            m_velocities = def.velocities;
            m_contacts   = def.contacts;

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < m_count; ++i)
            {
                b2Contact contact = m_contacts[i];

                b2Fixture  fixtureA = contact.FixtureA;
                b2Fixture  fixtureB = contact.FixtureB;
                b2Shape    shapeA   = fixtureA.Shape;
                b2Shape    shapeB   = fixtureB.Shape;
                float      radiusA  = shapeA.Radius;
                float      radiusB  = shapeB.Radius;
                b2Body     bodyA    = fixtureA.Body;
                b2Body     bodyB    = fixtureB.Body;
                b2Manifold manifold = contact.GetManifold();

                int pointCount = manifold.pointCount;
                Debug.Assert(pointCount > 0);

                b2ContactVelocityConstraint vc = m_velocityConstraints[i];
                vc.friction     = contact.Friction;
                vc.restitution  = contact.Restitution;
                vc.indexA       = bodyA.IslandIndex;
                vc.indexB       = bodyB.IslandIndex;
                vc.invMassA     = bodyA.InvertedMass;
                vc.invMassB     = bodyB.InvertedMass;
                vc.invIA        = bodyA.InvertedI;
                vc.invIB        = bodyB.InvertedI;
                vc.contactIndex = i;
                vc.pointCount   = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                b2ContactPositionConstraint pc = m_positionConstraints[i];
                pc.indexA       = bodyA.IslandIndex;
                pc.indexB       = bodyB.IslandIndex;
                pc.invMassA     = bodyA.InvertedMass;
                pc.invMassB     = bodyB.InvertedMass;
                pc.localCenterA = bodyA.Sweep.localCenter;
                pc.localCenterB = bodyB.Sweep.localCenter;
                pc.invIA        = bodyA.InvertedI;
                pc.invIB        = bodyB.InvertedI;
                pc.localNormal  = manifold.localNormal;
                pc.localPoint   = manifold.localPoint;
                pc.pointCount   = pointCount;
                pc.radiusA      = radiusA;
                pc.radiusB      = radiusB;
                pc.type         = manifold.type;

                for (int j = 0; j < pointCount; ++j)
                {
                    b2ManifoldPoint           cp  = manifold.points[j];
                    b2VelocityConstraintPoint vcp = vc.points[j];

                    if (m_step.warmStarting)
                    {
                        vcp.normalImpulse  = m_step.dtRatio * cp.normalImpulse;
                        vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse  = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA.SetZero();
                    vcp.rB.SetZero();
                    vcp.normalMass   = 0.0f;
                    vcp.tangentMass  = 0.0f;
                    vcp.velocityBias = 0.0f;

                    pc.localPoints[j] = cp.localPoint;

                    //vc.points[j] = vcp;
                }

                //Put back the struct data since struct data is copied by value
                //m_positionConstraints[i] = pc;
                //m_velocityConstraints[i] = vc;
            }
        }
		public void Defaults() 
        {
            points = new b2VelocityConstraintPoint[2] {b2VelocityConstraintPoint.Zero, b2VelocityConstraintPoint.Zero};
            normal = b2Vec2.Zero;

        }