/// <summary>
        /// Initialize a new <see cref="LanderIndividual"/> instance with Random values.
        /// </summary>
        public LanderIndividual(Random random)
        {
            // NOTE: network topology defined here
            this.neuralNet = new NeuralNetwork();
            this.neuralNet.InputCount = 7;
            this.neuralNet.OutputCount = 2;
            this.neuralNet.AddHiddenLayer(5);
            this.RandomGenerator = random;

            // Initialize the weights with random values between -1.0 and 1.0
            this.weights = this.neuralNet.GetAllWeights();
            for (int i = 0; i < this.weights.Count; i++)
            {
                this.weights[i] = this.RandomGenerator.NextDouble() * (weightMax - weightMin) - (weightMax - weightMin) / 2;
            }
            this.neuralNet.SetAllWeights(this.weights);
        }
        /// <summary>
        /// Run the genetic algorithm to train the neural network
        /// </summary>
        private void ExecuteTrainCommand()
        {
            this.ExecuteStopCommand();

            // The background worker allows the GA to be run in a different thread
            BackgroundWorker backgroundWorker = new BackgroundWorker();

            // Setup of the genetic algorithm
            LanderIndividualSettings landerIndividualSettings = new LanderIndividualSettings();
            LanderIndividualFactory landerFactory = new LanderIndividualFactory();
            GeneticAlgorithm.GeneticAlgorithm ga = new GeneticAlgorithm.GeneticAlgorithm(landerFactory);
            LanderIndividual best = null;
            int currentIteration = 0;

            // Set up the ga
            this.environment.Gravity = 2.0;
            this.environment.WindSpeed = 0.1;
            landerIndividualSettings.StartingFuel = 100;
            landerIndividualSettings.StartingHeight = 100;
            landerIndividualSettings.StartingHorizontal = 0;
            landerIndividualSettings.LanderEnvironment = this.environment;
            landerIndividualSettings.CrossoverAlgorithm = LanderIndividualSettings.CrossoverType.OnePoint;
            ga.SelectionType = GeneticAlgorithm.GeneticAlgorithm.SelectionTypes.Tournament;
            ga.TournamentSize = 4;
            ga.CrossoverProbability = 0;
            ga.MutationProbability = 1;
            ga.CalculationLimit = 60000;
            ga.ElitistCount = 4;
            ga.PopulationSize = 100;
            landerFactory.IndividualSettings = landerIndividualSettings;

            // This lambda function handles the iteration events from the ga.
            EventHandler<IterationEventArgs> handler = (sender, args) =>
            {
                backgroundWorker.ReportProgress(0, args);
            };

            // Set the work lambda function.
            backgroundWorker.DoWork += (sender, e) =>
            {

                // Add the iteration event handler to report progress back to the main thread
                ga.IterationEvent += handler;

                // Run the ga
                best = (LanderIndividual)ga.Run(landerIndividualSettings);

                ga.IterationEvent -= handler;

            };

            // Update the graph to show progress
            backgroundWorker.ProgressChanged += (sender, e) =>
            {
                this.MinFitnessValues.Add(new Tuple<int, double>(currentIteration, ((IterationEventArgs)e.UserState).MinFitness));
                this.MaxFitnessValues.Add(new Tuple<int, double>(currentIteration, ((IterationEventArgs)e.UserState).MaxFitness));
                this.AvgFitnessValues.Add(new Tuple<int, double>(currentIteration, ((IterationEventArgs)e.UserState).AverageFitness));
                currentIteration++;

                if (this.MinFitnessValues.Count > 600)
                {
                    this.MinFitnessValues.Clear();
                    this.MaxFitnessValues.Clear();
                    this.AvgFitnessValues.Clear();
                }
            };

            backgroundWorker.RunWorkerCompleted += (sender, e) =>
            {
                this.IsTraining = false;
                // Save the resulting neural network
                this.neuralNetwork = best.CurrentNeuralNetwork;
                Debug.WriteLine(this.neuralNetwork.ToString());
            };

            // Clear out previous chart data and run the background worker
            this.MinFitnessValues.Clear();
            this.MaxFitnessValues.Clear();
            this.AvgFitnessValues.Clear();
            backgroundWorker.WorkerReportsProgress = true;
            this.IsTraining = true;
            backgroundWorker.RunWorkerAsync();
        }
Exemple #3
0
 public void Net1()
 {
     NeuralNetwork net = new NeuralNetwork();
     net.InputCount = 2;
     net.OutputCount = 2;
 }
Exemple #4
0
        static void Main(string[] args)
        {
            bool quit = false;
            string input;

            // NOTE: network topology defined here
            neuralNetwork = new NeuralNetwork();
            neuralNetwork.InputCount = 7;
            neuralNetwork.OutputCount = 2;
            neuralNetwork.AddHiddenLayer(5);

            PrintHelp();

            while (quit == false)
            {
                Console.Write("> ");
                input = Console.ReadLine();
                switch (input)
                {
                    case "q":
                    case "quit":
                        quit = true;
                        break;
                    case "t":
                    case "train":
                        Train(true);
                        break;
                    case "tl":
                    case "trainlong":
                        TrainLong();
                        break;
                    case "r":
                    case "run":
                        RunSimulation();
                        break;
                    case "ra":
                    case "runall":
                        RunSimulationVarying(true);
                        break;
                    case "h":
                    case "help":
                        PrintHelp();
                        break;
                    case "p":
                    case "print":
                        PrintNetwork();
                        break;
                    case "rs":
                    case "reset":
                        ResetNetwork();
                        break;
                    case "rg":
                    case "rungeneralize":
                        RunSimulationGeneralize();
                        break;
                    default:
                        Console.WriteLine("Unrecognized command. Try 'help'");
                        break;
                }
            }
        }