Exemple #1
0
        /// <summary>
        ///     Evaluates all given <see cref="ClusterSet{TInstance}" />s according to the given
        ///     <see cref="IInternalEvaluationCriterion{TInstance}" />.
        /// </summary>
        /// <param name="clustering">The cluster-sets to be evaluated.</param>
        /// <param name="criterion">The criterion used to evaluate the cluster-sets.</param>
        /// <param name="maxClusters">The maximum number of clusters allowed for a cluster-set for it to be evaluated.</param>
        /// <returns>A list containing the evaluations for each cluster-set.</returns>
        /// <typeparam name="TInstance">The type of instance considered.</typeparam>
        public static ICollection <ClusterSetEvaluation <TInstance> > EvaluateClustering <TInstance>(
            this ClusteringResult <TInstance> clustering, IInternalEvaluationCriterion <TInstance> criterion,
            uint maxClusters) where TInstance : IComparable <TInstance>
        {
            var evals = new List <ClusterSetEvaluation <TInstance> >();

            // checks only one cluster allowed
            if (maxClusters == 1)
            {
                evals.Add(new ClusterSetEvaluation <TInstance>(clustering[0], double.NaN));
                return(evals);
            }

            // evaluates all cluster-sets
            foreach (var clusterSet in clustering.Reverse())
            {
                if (clusterSet.Count < 2 || clusterSet.Count > maxClusters)
                {
                    continue;
                }
                var eval = criterion.Evaluate(clusterSet);
                evals.Add(new ClusterSetEvaluation <TInstance>(clusterSet, eval));
            }

            return(evals);
        }
        /// <inheritdoc />
        public ClusteringResult <TInstance> GetClustering(IEnumerable <Cluster <TInstance> > clusters,
                                                          double dissimilarity = 0d)
        {
            // initializes elements
            var currentClusters = clusters.ToArray();

            this._clusters        = new Cluster <TInstance> [currentClusters.Length * 2 - 1];
            this._dissimilarities = new double[currentClusters.Length * 2 - 1][];
            this._curClusterCount = 0;

            // calculates initial dissimilarities
            foreach (var cluster in currentClusters)
            {
                this._clusters[this._curClusterCount] = cluster;
                this.UpdateDissimilarities();
                this._curClusterCount++;
            }

            var clustering = new ClusteringResult <TInstance>(currentClusters.Length)
            {
                [0] = new ClusterSet <TInstance>(currentClusters, dissimilarity)
            };
            var numSteps = currentClusters.Length;

            for (var i = 1; i < numSteps; i++)
            {
                // gets minimal dissimilarity between a pair of existing clusters
                var minDissimilarity = this.GetMinDissimilarity(out var clusterIdx1, out var clusterIdx2);

                // gets a copy of previous clusters, removes new cluster elements
                var cluster1    = this._clusters[clusterIdx1];
                var cluster2    = this._clusters[clusterIdx2];
                var newClusters = new Cluster <TInstance> [currentClusters.Length - 1];
                var idx         = 0;
                foreach (var cluster in currentClusters)
                {
                    if (!cluster.Equals(cluster1) && !cluster.Equals(cluster2))
                    {
                        newClusters[idx++] = cluster;
                    }
                }
                this._clusters[clusterIdx1] = null;
                this._clusters[clusterIdx2] = null;

                // creates a new cluster from the union of closest clusters (save reference to parents)
                var newCluster = new Cluster <TInstance>(cluster1, cluster2, minDissimilarity);

                // adds cluster to list and calculates distance to all others
                newClusters[idx] = this._clusters[this._curClusterCount] = newCluster;
                this.UpdateDissimilarities();
                this._curClusterCount++;

                // updates global list of clusters
                currentClusters = newClusters;
                clustering[i]   = new ClusterSet <TInstance>(currentClusters, minDissimilarity);
            }

            this._clusters        = null;
            this._dissimilarities = null;
            return(clustering);
        }
Exemple #3
0
 /// <summary>
 ///     Evaluates all given <see cref="ClusterSet{TInstance}" />s according to the given
 ///     <see cref="IInternalEvaluationCriterion{TInstance}" />. The maximum number of clusters allowed in a cluster-set for
 ///     it to be evaluated corresponds to sqrt(N/2), where N is the total number of instances clustered.
 /// </summary>
 /// <param name="clustering">The cluster-sets to be evaluated.</param>
 /// <param name="criterion">The criterion used to evaluate the cluster-sets.</param>
 /// <returns>A list containing the evaluations for each cluster-set.</returns>
 /// <typeparam name="TInstance">The type of instance considered.</typeparam>
 public static ICollection <ClusterSetEvaluation <TInstance> > EvaluateClustering <TInstance>(
     this ClusteringResult <TInstance> clustering, IInternalEvaluationCriterion <TInstance> criterion)
     where TInstance : IComparable <TInstance> =>
 EvaluateClustering(clustering, criterion, (uint)Math.Sqrt(clustering.Count / 2d));
Exemple #4
0
 /// <summary>
 ///     Evaluates all given <see cref="ClusterSet{TInstance}" />s according to the given
 ///     <see cref="IExternalEvaluationCriterion{TInstance,TClass}" />. The maximum number of clusters allowed in a
 ///     cluster-set for it to be evaluated corresponds to sqrt(N/2), where N is the total number of instances clustered.
 /// </summary>
 /// <param name="clustering">The cluster-sets to be evaluated.</param>
 /// <param name="criterion">The criterion used to evaluate the cluster-sets.</param>
 /// <param name="instanceClasses">The instances' classes.</param>
 /// <returns>A list containing the evaluations for each cluster-set.</returns>
 /// <typeparam name="TInstance">The type of instance considered.</typeparam>
 /// <typeparam name="TClass">The type of class considered.</typeparam>
 public static ICollection <ClusterSetEvaluation <TInstance> > EvaluateClustering <TInstance, TClass>(
     this ClusteringResult <TInstance> clustering, IExternalEvaluationCriterion <TInstance, TClass> criterion,
     IDictionary <TInstance, TClass> instanceClasses) where TInstance : IComparable <TInstance> =>
 EvaluateClustering(clustering, criterion, instanceClasses, (uint)Math.Sqrt(clustering.Count / 2d));