Exemple #1
0
        // Constructor
        public MainForm()
        {
            InitializeComponent();

            // Create network
            network = new DistanceNetwork(3, 100 * 100);

            // Create map bitmap
            mapBitmap = new Bitmap(200, 200, PixelFormat.Format24bppRgb);

            //
            RandomizeNetwork();
            UpdateSettings();
        }
Exemple #2
0
        // Update map
        private void UpdateMap(DistanceNetwork network)
        {
            // get first layer
            Layer layer = network.Layers[0];

            // lock
            Monitor.Enter(this);

            // run through all neurons
            for (int i = 0; i < layer.Neurons.Length; i++)
            {
                Neuron neuron = layer.Neurons[i];

                int x = i % networkSize;
                int y = i / networkSize;

                map[y, x, 0] = (int)neuron.Weights[0];
                map[y, x, 1] = (int)neuron.Weights[1];
                map[y, x, 2] = 0;
            }

            // collect active neurons
            for (int i = 0; i < pointsCount; i++)
            {
                network.Compute(trainingSet[i]);
                int w = network.GetWinner();

                map[w / networkSize, w % networkSize, 2] = 1;
            }

            // unlock
            Monitor.Exit(this);

            //
            mapPanel.Invalidate();
        }
Exemple #3
0
        // Worker thread
        void SearchSolution()
        {
            // create network
            DistanceNetwork network = new DistanceNetwork(2, networkSize * networkSize);

            // set random generators range
            foreach (var layer in network.Layers)
                foreach (var neuron in layer.Neurons)
                    neuron.RandGenerator = new UniformContinuousDistribution(
                        new Range(0, Math.Max(pointsPanel.ClientRectangle.Width, pointsPanel.ClientRectangle.Height)));

            // create learning algorithm
            SOMLearning trainer = new SOMLearning(network, networkSize, networkSize);

            // create map
            map = new int[networkSize, networkSize, 3];

            double fixedLearningRate = learningRate / 10;
            double driftingLearningRate = fixedLearningRate * 9;

            // iterations
            int i = 0;

            // loop
            while (!needToStop)
            {
                trainer.LearningRate = driftingLearningRate * (iterations - i) / iterations + fixedLearningRate;
                trainer.LearningRadius = (double)learningRadius * (iterations - i) / iterations;

                // run training epoch
                trainer.RunEpoch(trainingSet);

                // update map
                UpdateMap(network);

                // increase current iteration
                i++;

                // set current iteration's info
                SetText(currentIterationBox, i.ToString());

                // stop ?
                if (i >= iterations)
                    break;
            }

            // enable settings controls
            EnableControls(true);
        }
Exemple #4
0
        // Worker thread
        void SearchSolution()
        {
            // create network
            DistanceNetwork network = new DistanceNetwork(2, neurons);

            // set random generators range
            foreach (var layer in network.Layers)
                foreach (var neuron in layer.Neurons)
                    neuron.RandGenerator = new UniformContinuousDistribution(new Range(0, 1000));


            // create learning algorithm
            ElasticNetworkLearning trainer = new ElasticNetworkLearning(network);

            double fixedLearningRate = learningRate / 20;
            double driftingLearningRate = fixedLearningRate * 19;

            // path
            double[,] path = new double[neurons + 1, 2];

            // input
            double[] input = new double[2];

            // iterations
            int i = 0;

            // loop
            while (!needToStop)
            {
                // update learning speed & radius
                trainer.LearningRate = driftingLearningRate * (iterations - i) / iterations + fixedLearningRate;
                trainer.LearningRadius = learningRadius * (iterations - i) / iterations;

                // set network input
                int currentCity = rand.Next(citiesCount);
                input[0] = map[currentCity, 0];
                input[1] = map[currentCity, 1];

                // run one training iteration
                trainer.Run(input);

                // show current path
                for (int j = 0; j < neurons; j++)
                {
                    path[j, 0] = network.Layers[0].Neurons[j].Weights[0];
                    path[j, 1] = network.Layers[0].Neurons[j].Weights[1];
                }
                path[neurons, 0] = network.Layers[0].Neurons[0].Weights[0];
                path[neurons, 1] = network.Layers[0].Neurons[0].Weights[1];

                chart.UpdateDataSeries("path", path);

                // increase current iteration
                i++;

                // set current iteration's info
                SetText(currentIterationBox, i.ToString());

                // stop ?
                if (i >= iterations)
                    break;
            }

            // enable settings controls
            EnableControls(true);
        }