Exemple #1
0
//-----------------------------------------------------------------------------
// Parse a Type Sig
//
// ** rules **
// TypeSig -> id ('.' id)* '[ ','* ]'*
//-----------------------------------------------------------------------------
    protected NonRefTypeSig ParseTypeSig()
    {
    // Currently, we implement this by parsing ObjExpressions. That's easier
    // for us, but may let us parse illegal things. That's ok. The TypeSig
    // container class along with semantic checking will still give us the
    // expected error control.
        NonRefTypeSig sig = null;
    
        Identifier stId = ReadExpectedIdentifier();        
        Exp o = new SimpleObjExp(stId);
        
        Token t = m_lexer.PeekNextToken();        
        while (t.TokenType == Token.Type.cDot)
        {
            ConsumeNextToken();
        
            stId = ReadExpectedIdentifier();
            o = new DotObjExp(o, stId);
                        
            t = m_lexer.PeekNextToken();
        }  
        
        sig = new SimpleTypeSig(o);
        
    // Check for arrays
        while (t.TokenType == Token.Type.cLRSquare)
        {   
            sig = new ArrayTypeSig(sig, 1);
            
            ConsumeNextToken();            
            t = m_lexer.PeekNextToken();
        }          
                
        return sig;
    }
Exemple #2
0
//-----------------------------------------------------------------------------
// E -> E . i
// E -> E . i (...)
// E -> E [ E]
//-----------------------------------------------------------------------------
    protected Exp ParsePrimaryExp()
    {
    
        Exp eFinal = ParseExpAtom();
        
        // Now, since ObjExp are left-linear, we can actually parse them recursively
        // We parsed the base case, so we just keep iterating through deciding
        // which rule to apply. eFinal contains the root of the ast we're building
        
        Token t;
        while(true)
        {
            t = m_lexer.PeekNextToken();
            
            // If next char is '.', then we're either doing:
            // E -> E . i
            // E -> E . i (...)
            if (t.TokenType == Token.Type.cDot)
            {
                ConsumeNextToken(); // eat the dot
                
                Identifier stId = ReadExpectedIdentifier();
                Token t2 = m_lexer.PeekNextToken();
                
                // MethodCall - if next character is a '('
                // E -> E . i (...)
                if (t2.TokenType == Token.Type.cLParen)
                {
                    ArgExp [] arParams = ParseArgList();
                    eFinal = new MethodCallExp(eFinal, stId, arParams);                    
                    continue;
                } 
                // Dot operator - for all other cases
                // E -> E . i
                else 
                { 
                    eFinal = new DotObjExp(eFinal, stId);
                    continue;
                }            
            }
            
            // If next char is a '[', then this is an array access
            // E -> E [ E ]
            else if (t.TokenType == Token.Type.cLSquare) 
            {
                ConsumeNextToken();                
                Exp eIdx = ParseExp();                
                ReadExpectedToken(Token.Type.cRSquare);
                
                eFinal = new ArrayAccessExp(eFinal, eIdx);
                continue;
            } 
            
            // If we got to here, then we're done so break out of loop
            break;
            
        } // end while
    
        
        // @hack
        // Since expressions can be types (ie, that's how we parse a TypeCast)
        // Check if this is an array type
        if (t.TokenType == Token.Type.cLRSquare)
        {
            NonRefTypeSig sigElemType = new SimpleTypeSig(eFinal);
            TypeSig tSig = ParseOptionalArrayDecl(sigElemType);
            return new TempTypeExp(tSig);
        }
        
        return eFinal;
    }
Exemple #3
0
//-----------------------------------------------------------------------------
// Parse a list of identifiers separated by dots
// 
// ** rules **
// id ( '.' id )*
//-----------------------------------------------------------------------------
    protected Exp ParseDottedIdList()
    {
        Identifier stId = ReadExpectedIdentifier();        
        Exp o = new SimpleObjExp(stId);
        
        Token t = m_lexer.PeekNextToken();        
        while (t.TokenType == Token.Type.cDot)
        {
            ConsumeNextToken();
            
            stId = ReadExpectedIdentifier();
            o = new DotObjExp(o, stId);
                        
            t = m_lexer.PeekNextToken();
        }  
        
        return o;       
    
    }
Exemple #4
0
    // Semantic resolution
    protected override Exp ResolveExpAsRight(ISemanticResolver s)
    {   
        // Only resolve once.     
        if (m_symbol != null)
            return this;
            
        // First, resolve our parameters (because of overloading)
        // We need to know the URT types for our parameters
        // in order to resolve between overloaded operators
        
        Type [] alParamTypes = new Type[m_arParams.Length];
        
        
        for(int i = 0; i < m_arParams.Length; i++)        
        {
            Exp e = m_arParams[i];
            ResolveExpAsRight(ref e, s);
            Debug.Assert(e == m_arParams[i]);
            
            Type tParam = e.CLRType;
            
            //if ((tParam !=null) && tParam.IsByRef)
            //    tParam = tParam.GetElementType();
            
            alParamTypes[i] = tParam;
            //Debug.Assert(alParamTypes[i] != null);
            
        }   
        
        TypeEntry tCur = s.GetCurrentClass();    
        TypeEntry tLeft = null; // Type to lookup in   
        
        // Is this a 'base' access?
        // Convert to the real type and set a non-virtual flag
        if (m_objExp is SimpleObjExp)
        {
            SimpleObjExp e = m_objExp as SimpleObjExp;
            if (e.Name.Text == "base")
            {
                // Set the scope that we lookup in.
                tLeft = tCur.Super;
                
                // Still need to resolve the expression.
                m_objExp = new SimpleObjExp("this");               
                                               
                m_fIsNotPolymorphic = true;
            }
        }
        
#if true
        // See if we have a delegate here
        Exp eDelegate = null;
        if (m_objExp == null)
        {
            Exp e = new SimpleObjExp(m_idName);
            Exp.ResolveExpAsRight(ref e, s);
            if (!(e is SimpleObjExp))                
                eDelegate = e;
        } else {
            // If it's an interface, then we know we can't have a delegate field on it, 
            // so short-circuit now. 
            Exp.ResolveExpAsRight(ref m_objExp, s);
            if (!m_objExp.CLRType.IsInterface)
            {                
                Exp e = new DotObjExp(m_objExp, m_idName);
                Exp.ResolveExpAsRight(ref e, s);
                if (!(e is DotObjExp))                
                    eDelegate = e;        
            }
        }

        if (eDelegate != null)
        {
            if (!DelegateDecl.IsDelegate(eDelegate.CLRType))
            {
                //Debug.Assert(false, "@todo - " + m_strName + " is not a delegate or function"); // @todo - legit
                // Just fall through for now, method resolution will decide if this is a valid function
            } else 
            {            
                Exp e = new MethodCallExp(
                    eDelegate, 
                    new Identifier("Invoke"), 
                    this.m_arParams
                );
                
                Exp.ResolveExpAsRight(ref e, s);
                return e;        
            }
        }        
#endif    
        // No delegate, carry on with a normal function call
                        
        // If there's no objexp, then the function is a method
        // of the current class. 
        // make it either a 'this' or a static call
        if (m_objExp == null)
        {   
            // Lookup
            bool fIsVarArgDummy;
            MethodExpEntry sym = tCur.LookupMethod(s, m_idName, alParamTypes, out fIsVarArgDummy);
            
            if (sym.IsStatic)
            {                
                m_objExp = new TypeExp(tCur);
            } else {
                m_objExp = new SimpleObjExp("this");
            }
        }
        
        // Need to Lookup m_strName in m_objExp's scope (inherited scope)
        Exp.ResolveExpAsRight(ref m_objExp, s);
                    
                
        // Get type of of left side object
        // This call can either be a field on a variable
        // or a static method on a class
        
        bool fIsStaticMember = false;
        
        // If we don't yet know what TypeEntry this methodcall is on, then figure
        // it out based off the expression
        if (tLeft == null)
        {
            if (m_objExp is TypeExp)
            {
                fIsStaticMember = true;
                tLeft = ((TypeExp) m_objExp).Symbol;
            } else {
                fIsStaticMember = false;
                tLeft = s.ResolveCLRTypeToBlueType(m_objExp.CLRType);
            }
        }
        
        // Here's the big lookup. This will jump through all sorts of hoops to match
        // parameters, search base classes, do implied conversions, varargs, 
        // deal with abstract, etc.
        bool fIsVarArg;
        m_symbol = tLeft.LookupMethod(s, m_idName, alParamTypes, out fIsVarArg);
        Debug.Assert(m_symbol != null);
        
        if (m_fIsNotPolymorphic)
        {
            // of the form 'base.X(....)'
            if (m_symbol.IsStatic)
                ThrowError(SymbolError.BaseAccessCantBeStatic(this.Location, m_symbol)); // @todo - PrintError?
        } else {
            // normal method call
            /*
            if (fIsStaticMember && !m_symbol.IsStatic)
                ThrowError(SymbolError.ExpectInstanceMember(this.Location)); // @todo - PrintError?
            else if (!fIsStaticMember && m_symbol.IsStatic)                
                ThrowError(SymbolError.ExpectStaticMember(this.Location)); // @todo - PrintError?
            */
            Debug.Assert(fIsStaticMember == m_symbol.IsStatic, "@todo - user error. Mismatch between static & instance members on line.");
        }
        
        
        // If we have a vararg, then transform it 
        if (fIsVarArg)
        {
        // Create the array
            int cDecl = m_symbol.ParamCount;
            int cCall = this.ParamExps.Length;
            
            ArrayTypeSig tSig = new ArrayTypeSig(m_symbol.ParamCLRType(cDecl - 1), s);
            
            Node [] list = new Node[cCall - cDecl + 1];
            for(int i = 0; i < list.Length; i++)
            {
                list[i] = this.ParamExps[i + cDecl - 1];
            }
            
            Exp eArray = new NewArrayObjExp(
                tSig,
                new ArrayInitializer(
                    list
                )
            );
            
            Exp.ResolveExpAsRight(ref eArray, s);
            
        // Change the parameters to use the array    
            ArgExp [] arParams = new ArgExp[cDecl];
            for(int i = 0; i < cDecl - 1; i++)
                arParams[i] = m_arParams[i];
            arParams[cDecl - 1] = new ArgExp(EArgFlow.cIn, eArray);
            
            m_arParams = arParams;                            
        } // end vararg transformation
                
        this.CalcCLRType(s);
   
        return this;
    }