public void TestToString()
 {
     double[] ps = { 5, 0, 0, 0 };
     var funct = new GaussianFunction(3, ps, 0);
     double[] x = { -1, 0, 1 };
     funct.Evaluate(x);
     Assert.AreEqual("[GaussianFunction:width=5.00,center=0.00,0.00,0.00]", funct.ToString());
 }
 public void TestEvaluate()
 {
     double[] ps = { 5, 0, 0, 0 };
     var funct = new GaussianFunction(3, ps, 0);
     double[] x = { -1, 0, 1 };
     double y = funct.Evaluate(x);
     Assert.AreEqual(0.9607894391523232, y, AIFH.DefaultPrecision);
 }
 public void TestOther()
 {
     double[] ps = { 5, 0, 0, 0 };
     var funct = new GaussianFunction(3, ps, 0);
     Assert.AreEqual(3, funct.Dimensions);
     funct.SetCenter(0, 100);
     Assert.AreEqual(100, funct.GetCenter(0), AIFH.DefaultPrecision);
     funct.Width = 5;
     Assert.AreEqual(5, funct.Width, AIFH.DefaultPrecision);
 }
Exemple #4
0
        /// <summary>
        /// Construct the RBF network. 
        /// </summary>
        /// <param name="theInputCount">The input count.</param>
        /// <param name="rbfCount">The number of RBF functions.</param>
        /// <param name="theOutputCount">The output count.</param>
        public RBFNetwork(int theInputCount, int rbfCount, int theOutputCount)
        {
            _inputCount = theInputCount;
            _outputCount = theOutputCount;

            // calculate input and output weight counts
            // add 1 to output to account for an extra bias node
            int inputWeightCount = _inputCount*rbfCount;
            int outputWeightCount = (rbfCount + 1)*_outputCount;
            int rbfParams = (_inputCount + 1)*rbfCount;
            _longTermMemory = new double[
                inputWeightCount + outputWeightCount + rbfParams];

            _indexInputWeights = 0;
            _indexOutputWeights = inputWeightCount + rbfParams;

            _rbf = new IFnRBF[rbfCount];

            for (int i = 0; i < rbfCount; i++)
            {
                int rbfIndex = inputWeightCount + ((_inputCount + 1)*i);
                _rbf[i] = new GaussianFunction(_inputCount, _longTermMemory, rbfIndex);
            }
        }