/// <summary>
 /// Dummy attribute
 /// </summary>
 /// <param name="instances"></param>
 /// <returns></returns>
 public void NominalToBinary(weka.core.Instances instances)
 {
     weka.filters.Filter nominalToBinary = new weka.filters.unsupervised.attribute.NominalToBinary();
     nominalToBinary.setInputFormat(instances);
     instances     = weka.filters.Filter.useFilter(instances, nominalToBinary);
     this.Instance = instances;
 }
        public static double SupportVectorMachineTest(weka.core.Instances insts)
        {
            try
            {
                //weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("iris.arff"));

                insts.setClassIndex(insts.numAttributes() - 1);


                SupportVectorMachine = new weka.classifiers.functions.SMO();

                weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();

                myDummy.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myDummy);


                weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                myNormalize.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNormalize);

                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);


                SupportVectorMachine.buildClassifier(train);


                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = SupportVectorMachine.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                return((double)numCorrect / (double)testSize * 100.0);
            }
            catch (java.lang.Exception ex)
            {
                ex.printStackTrace();
                return(0);
            }
        }
        private void button1_Click(object sender, EventArgs e)
        {
            weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(file));
            double[]            Data  = new double[insts.numAttributes()];
            for (int i = 0; i < list.Count; i++)
            {
                if (list[i].GetType() == typeof(TextBox))
                {
                    TextBox txt   = (TextBox)list[i];
                    string  value = txt.Text.Replace('.', ',');
                    Data[i] = Convert.ToDouble(value);
                }
                else
                {
                    ComboBox combobox = (ComboBox)list[i];
                    Data[i] = Convert.ToDouble(combobox.SelectedIndex);
                }
            }
            // Data[(insts.numAttributes() - 1] = 0;
            insts.setClassIndex(insts.numAttributes() - 1);
            Instance newInsts = new Instance(1.0, Data);

            insts.add(newInsts);
            string type = model.GetType().ToString();

            if (type == "weka.classifiers.bayes.NaiveBayes")
            {
                weka.filters.Filter myDiscretize = new weka.filters.unsupervised.attribute.Discretize();
                myDiscretize.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myDiscretize);
            }
            else if (type == "weka.classifiers.lazy.IBk")
            {
                weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                myDummy.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myDummy);

                weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                myNormalize.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNormalize);
            }
            double index = model.classifyInstance(insts.lastInstance());

            string result = insts.attribute(insts.numAttributes() - 1).value(Convert.ToInt16(index));

            MessageBox.Show(result);
        }
Exemple #4
0
        //Artificial NN
        public static double ArtificialNN(weka.core.Instances insts)
        {
            try
            {
                insts.setClassIndex(insts.numAttributes() - 1);

                Anncl = new weka.classifiers.functions.MultilayerPerceptron();

                weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                myDummy.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myDummy);

                weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                myNormalize.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNormalize);

                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                Anncl.buildClassifier(train);

                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = Anncl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                return((double)numCorrect / (double)testSize * 100.0);
            }
            catch (java.lang.Exception ex)
            {
                ex.printStackTrace();
                return(0);
            }
        }
Exemple #5
0
        private void btnDiscover_Click(object sender, EventArgs e)
        {
            string type  = model.GetType().ToString();
            bool   flag  = false;
            bool   flag2 = false;

            //input kontrolleri
            if (nominal != null)
            {
                for (int i = 0; i < nominal.Length; i++)
                {
                    if (nominal[i].SelectedIndex == -1)
                    {
                        flag = true;
                        break;
                    }
                }
            }
            if (numeric != null)
            {
                for (int i = 0; i < numeric.Length; i++)
                {
                    if (String.IsNullOrEmpty(numeric[i].Text))
                    {
                        flag2 = true;
                        break;
                    }
                }
            }
            if (numAtt == numeric.Length && flag2 == true)
            {
                MessageBox.Show("Please select value!", "Error Message!");
            }
            else if (numAtt == nominal.Length && flag == true)
            {
                MessageBox.Show("Please select value!", "Error Message!");
            }
            else if ((nominal.Length + numeric.Length) == numAtt && (flag == true || flag2 == true))
            {
                MessageBox.Show("Please select value!", "Error Message!");
            }
            else
            {
                weka.core.Instance newIns = new weka.core.Instance(numAtt + 1);
                newIns.setDataset(insts);

                int i1 = 0, i2 = 0;
                for (int i = 0; i < numAtt; i++)
                {
                    //nominal
                    if (typeAtt[i])
                    {
                        newIns.setValue(i, nominal[i1].SelectedItem.ToString());
                        i1++;
                    }
                    //numeric
                    else
                    {
                        newIns.setValue(i, double.Parse(numeric[i2].Text));
                        i2++;
                    }
                }

                weka.core.Instances insts2 = new weka.core.Instances(insts);
                insts2.add(newIns);

                if (type == "weka.classifiers.bayes.NaiveBayes")
                {
                    weka.filters.Filter myDiscretize = new weka.filters.unsupervised.attribute.Discretize();
                    myDiscretize.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myDiscretize);
                }

                else if (type == "weka.classifiers.functions.Logistic")
                {
                    weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                    myDummy.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myDummy);

                    weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                    myNormalize.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myNormalize);
                }

                else if (type == "new weka.classifiers.lazy.IBk")
                {
                    weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                    myDummy.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myDummy);

                    weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                    myNormalize.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myNormalize);
                }
                else if (type == "weka.classifiers.trees.J48")
                {
                }
                else if (type == "weka.classifiers.trees.RandomForest")
                {
                }
                else if (type == "weka.classifiers.trees.RandomTree")
                {
                }
                else if (type == "weka.classifiers.functions.MultilayerPerceptron")
                {
                    weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                    myDummy.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myDummy);

                    weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                    myNormalize.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myNormalize);
                }
                else if (type == "weka.classifiers.functions.SMO")
                {
                    weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                    myDummy.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myDummy);

                    weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                    myNormalize.setInputFormat(insts2);
                    insts2 = weka.filters.Filter.useFilter(insts2, myNormalize);
                }

                double index = model.classifyInstance(insts2.lastInstance());
                //Model okuma kısmı
                weka.classifiers.Classifier cls = (weka.classifiers.Classifier)weka.core.SerializationHelper.read("models/mdl.model");
                lblResult2.Text = "Result= " + insts2.attribute(insts2.numAttributes() - 1).value(Convert.ToInt16(index));
            }
        }
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog file = new OpenFileDialog();

            if (file.ShowDialog() == DialogResult.OK)
            {
                string filename = file.FileName;
                string filee    = Path.GetFileName(filename);
                bool   attributeType;
                string attributeName      = " ";
                int    numAttributeValue  = 0;
                string attributeValueName = " ";

                textBox1.Text = filee + " chosen succesfully!";

                ///////Decision Tree
                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(filename));


                insts.setClassIndex(insts.numAttributes() - 1);

                //find nominal or numeric attributes and create dropbox or textbox
                int numofAttributes = insts.numAttributes() - 1;
                for (int i = 0; i < numofAttributes; i++)
                {
                    attributeType = insts.attribute(i).isNumeric();
                    attributeName = insts.attribute(i).name();
                    dataGridView1.Rows.Add(attributeName);
                    if (attributeType == true)
                    {
                    }
                    else
                    {
                        numAttributeValue = insts.attribute(i).numValues();
                        string[] name = new string[numAttributeValue];
                        for (int j = 0; j < numAttributeValue; j++)
                        {
                            attributeValueName = insts.attribute(i).value(j);
                            name[j]           += attributeValueName;
                        }
                        DataGridViewComboBoxCell combo = new DataGridViewComboBoxCell();
                        combo.DataSource = name.ToList();
                        dataGridView1.Rows[i].Cells[1] = combo;
                    }
                }

                cl = new weka.classifiers.trees.J48();

                textBox2.Text = "Performing " + percentSplit + "% split evaluation.";

                //filling missing values
                weka.filters.Filter missingval = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, missingval);

                weka.filters.Filter myNormalized = new weka.filters.unsupervised.instance.Normalize();
                myNormalized.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNormalized);


                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                cl.buildClassifier(train);

                string str = cl.toString();

                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                textBox3.Text = numCorrect + " out of " + testSize + " correct (" +
                                (double)((double)numCorrect / (double)testSize * 100.0) + "%)";



                //////////Naive Bayes

                //dosya okuma
                weka.core.Instances insts2 = new weka.core.Instances(new java.io.FileReader(filename));
                insts2.setClassIndex(insts2.numAttributes() - 1);

                //naive bayes
                cl2 = new weka.classifiers.bayes.NaiveBayes();


                //filling missing values
                weka.filters.Filter missingval2 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, missingval2);

                //for naive bayes
                weka.filters.Filter discrete2 = new weka.filters.unsupervised.attribute.Discretize();
                discrete2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, discrete2);

                //randomize the order of the instances in the dataset. -ortak
                weka.filters.Filter myRandom2 = new weka.filters.unsupervised.instance.Randomize();
                myRandom2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, myRandom2);

                //ortak
                int trainSize2             = insts2.numInstances() * percentSplit / 100;
                int testSize2              = insts2.numInstances() - trainSize2;
                weka.core.Instances train2 = new weka.core.Instances(insts2, 0, trainSize2);

                cl2.buildClassifier(train2);

                string str2 = cl2.toString();

                int numCorrect2 = 0;
                for (int i = trainSize2; i < insts2.numInstances(); i++)
                {
                    weka.core.Instance currentInst2    = insts2.instance(i);
                    double             predictedClass2 = cl2.classifyInstance(currentInst2);
                    if (predictedClass2 == insts2.instance(i).classValue())
                    {
                        numCorrect2++;
                    }
                }
                textBox4.Text = numCorrect2 + " out of " + testSize2 + " correct (" +
                                (double)((double)numCorrect2 / (double)testSize2 * 100.0) + "%)";


                /////////K-Nearest Neigbour

                //dosya okuma
                weka.core.Instances insts3 = new weka.core.Instances(new java.io.FileReader(filename));
                insts3.setClassIndex(insts3.numAttributes() - 1);

                cl3 = new weka.classifiers.lazy.IBk();


                //filling missing values
                weka.filters.Filter missingval3 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, missingval3);

                //Convert to dummy attribute knn,svm,neural network
                weka.filters.Filter dummy3 = new weka.filters.unsupervised.attribute.NominalToBinary();
                dummy3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, dummy3);

                //normalize numeric attribute
                weka.filters.Filter myNormalized3 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, myNormalized3);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom3 = new weka.filters.unsupervised.instance.Randomize();
                myRandom3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, myRandom3);

                int trainSize3             = insts3.numInstances() * percentSplit / 100;
                int testSize3              = insts3.numInstances() - trainSize3;
                weka.core.Instances train3 = new weka.core.Instances(insts3, 0, trainSize3);

                cl3.buildClassifier(train3);

                string str3 = cl3.toString();

                int numCorrect3 = 0;
                for (int i = trainSize3; i < insts3.numInstances(); i++)
                {
                    weka.core.Instance currentInst3    = insts3.instance(i);
                    double             predictedClass3 = cl3.classifyInstance(currentInst3);
                    if (predictedClass3 == insts3.instance(i).classValue())
                    {
                        numCorrect3++;
                    }
                }
                textBox5.Text = numCorrect3 + " out of " + testSize3 + " correct (" +
                                (double)((double)numCorrect3 / (double)testSize3 * 100.0) + "%)";

                //////////Artificial neural network
                //dosya okuma
                weka.core.Instances insts4 = new weka.core.Instances(new java.io.FileReader(filename));
                insts4.setClassIndex(insts4.numAttributes() - 1);

                cl4 = new weka.classifiers.functions.MultilayerPerceptron();


                //filling missing values
                weka.filters.Filter missingval4 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, missingval4);

                //Convert to dummy attribute
                weka.filters.Filter dummy4 = new weka.filters.unsupervised.attribute.NominalToBinary();
                dummy4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, dummy4);

                //normalize numeric attribute
                weka.filters.Filter myNormalized4 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myNormalized4);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom4 = new weka.filters.unsupervised.instance.Randomize();
                myRandom4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myRandom4);

                int trainSize4             = insts4.numInstances() * percentSplit / 100;
                int testSize4              = insts4.numInstances() - trainSize4;
                weka.core.Instances train4 = new weka.core.Instances(insts4, 0, trainSize4);

                cl4.buildClassifier(train4);

                string str4 = cl4.toString();

                int numCorrect4 = 0;
                for (int i = trainSize4; i < insts4.numInstances(); i++)
                {
                    weka.core.Instance currentInst4    = insts4.instance(i);
                    double             predictedClass4 = cl4.classifyInstance(currentInst4);
                    if (predictedClass4 == insts4.instance(i).classValue())
                    {
                        numCorrect4++;
                    }
                }

                textBox6.Text = numCorrect4 + " out of " + testSize4 + " correct (" +
                                (double)((double)numCorrect4 / (double)testSize4 * 100.0) + "%)";



                ///////Support Vector Machine
                // dosya okuma
                weka.core.Instances insts5 = new weka.core.Instances(new java.io.FileReader(filename));
                insts5.setClassIndex(insts5.numAttributes() - 1);

                cl5 = new weka.classifiers.functions.SMO();


                //filling missing values
                weka.filters.Filter missingval5 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, missingval5);

                //Convert to dummy attribute
                weka.filters.Filter dummy5 = new weka.filters.unsupervised.attribute.NominalToBinary();
                dummy5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, dummy5);

                //normalize numeric attribute
                weka.filters.Filter myNormalized5 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myNormalized5);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom5 = new weka.filters.unsupervised.instance.Randomize();
                myRandom5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myRandom5);

                int trainSize5             = insts5.numInstances() * percentSplit / 100;
                int testSize5              = insts5.numInstances() - trainSize5;
                weka.core.Instances train5 = new weka.core.Instances(insts5, 0, trainSize5);

                cl5.buildClassifier(train5);

                string str5 = cl5.toString();

                int numCorrect5 = 0;
                for (int i = trainSize5; i < insts5.numInstances(); i++)
                {
                    weka.core.Instance currentInst5    = insts5.instance(i);
                    double             predictedClass5 = cl5.classifyInstance(currentInst5);
                    if (predictedClass5 == insts5.instance(i).classValue())
                    {
                        numCorrect5++;
                    }
                }

                textBox7.Text = numCorrect5 + " out of " + testSize5 + " correct (" +
                                (double)((double)numCorrect5 / (double)testSize5 * 100.0) + "%)";



                string result1 = textBox3.Text;
                string output1 = result1.Split('(', ')')[1];
                output1 = output1.Remove(output1.Length - 1);
                double r1 = Convert.ToDouble(output1);

                string result2 = textBox4.Text;
                string output2 = result2.Split('(', ')')[1];
                output2 = output2.Remove(output2.Length - 1);
                double r2 = Convert.ToDouble(output2);

                string result3 = textBox5.Text;
                string output3 = result3.Split('(', ')')[1];
                output3 = output3.Remove(output3.Length - 1);
                double r3 = Convert.ToDouble(output3);

                string result4 = textBox6.Text;
                string output4 = result4.Split('(', ')')[1];
                output4 = output4.Remove(output4.Length - 1);
                double r4 = Convert.ToDouble(output4);

                string result5 = textBox7.Text;
                string output5 = result5.Split('(', ')')[1];
                output5 = output5.Remove(output5.Length - 1);
                double r5 = Convert.ToDouble(output5);


                double[] max_array = new double[] { r1, r2, r3, r4, r5 };

                double max = max_array.Max();
                if (r1 == max)
                {
                    textBox8.Text = "Best Algoritm is Decision Tree Algorithm ";
                }
                else if (r2 == max)
                {
                    textBox8.Text = "Best Algoritm is Naive Bayes Algorithm ";
                }
                else if (r3 == max)
                {
                    textBox8.Text = "Best Algoritm is K-Nearest Neighbour Algorithm ";
                }
                else if (r4 == max)
                {
                    textBox8.Text = "Best Algoritm is Artificial Neural Network Algorithm ";
                }
                else if (r5 == max)
                {
                    textBox8.Text = "Best Algoritm is Support Vector Machine Algorithm ";
                }
            }
        }
		public override void  buildClassifier(Instances insts)
		{
			
			if (insts.checkForStringAttributes())
			{
				throw new Exception("Cannot handle string attributes!");
			}
			if (insts.numClasses() > 2)
			{
				throw new System.Exception("Can only handle two-class datasets!");
			}
			if (insts.classAttribute().Numeric)
			{
				throw new Exception("Can't handle a numeric class!");
			}
			
			// Filter data
			m_Train = new Instances(insts);
			m_Train.deleteWithMissingClass();
			m_ReplaceMissingValues = new ReplaceMissingValues();
			m_ReplaceMissingValues.setInputFormat(m_Train);
			m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
			
			m_NominalToBinary = new NominalToBinary();
			m_NominalToBinary.setInputFormat(m_Train);
			m_Train = Filter.useFilter(m_Train, m_NominalToBinary);
			
			/** Randomize training data */
			//UPGRADE_TODO: The differences in the expected value  of parameters for constructor 'java.util.Random.Random'  may cause compilation errors.  "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1092'"
			m_Train.randomize(new System.Random((System.Int32) m_Seed));
			
			/** Make space to store perceptrons */
			m_Additions = new int[m_MaxK + 1];
			m_IsAddition = new bool[m_MaxK + 1];
			m_Weights = new int[m_MaxK + 1];
			
			/** Compute perceptrons */
			m_K = 0;
			for (int it = 0; it < m_NumIterations; it++)
			{
				for (int i = 0; i < m_Train.numInstances(); i++)
				{
					Instance inst = m_Train.instance(i);
					if (!inst.classIsMissing())
					{
						int prediction = makePrediction(m_K, inst);
						//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
						int classValue = (int) inst.classValue();
						if (prediction == classValue)
						{
							m_Weights[m_K]++;
						}
						else
						{
							m_IsAddition[m_K] = (classValue == 1);
							m_Additions[m_K] = i;
							m_K++;
							m_Weights[m_K]++;
						}
						if (m_K == m_MaxK)
						{
							//UPGRADE_NOTE: Labeled break statement was changed to a goto statement. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1012'"
							goto out_brk;
						}
					}
				}
			}
			//UPGRADE_NOTE: Label 'out_brk' was added. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1011'"

out_brk: ;
			
		}
Exemple #8
0
        private void result_Click(object sender, EventArgs e)
        {
            ArrayList algorithms = new ArrayList();

            algorithms.Add("Naive Bayes");
            algorithms.Add("K Nearest Neighbor");
            algorithms.Add("Decision Tree");
            algorithms.Add("Neural Network");
            algorithms.Add("Support Vector Machine");
            ArrayList successPercent = new ArrayList();
            double    res_Naive, res_KNN, res_NN, res_Tree, res_SVM = 0.0;
            string    nameOfAlgo = "";

            //NAIVE BAYES ALGORITHM
            weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(fileDirectory));

            //CREATIING DYNAMIC GRIDVIEW FOR ADDING NEW INSTANCE
            dataGridView1.ColumnCount   = 2;
            dataGridView1.RowCount      = insts.numAttributes();
            String[,] matrixOfInstances = new String[insts.numInstances(), insts.numAttributes()];



            for (int y = 0; y < insts.numAttributes() - 1; y++)
            {
                dataGridView1.Rows[y].Cells[0].Value = insts.attribute(y).name();
                if (insts.attribute(y).isNominal())
                {
                    //nominalDataValues.Add(insts.attribute(y).toString());
                    string   phrase = insts.attribute(y).toString();
                    string[] first  = phrase.Split('{');

                    string[] second = first[1].Split('}');

                    string[] attributeValues = second[0].Split(',');

                    DataGridViewComboBoxCell comboColumn = new DataGridViewComboBoxCell();

                    foreach (var a in attributeValues)
                    {
                        comboColumn.Items.Add(a);
                    }
                    dataGridView1.Rows[y].Cells[1] = comboColumn;
                }
            }

            insts.setClassIndex(insts.numAttributes() - 1);
            cl_Naive = new weka.classifiers.bayes.NaiveBayes();

            weka.filters.Filter myNominalData = new weka.filters.unsupervised.attribute.Discretize();
            myNominalData.setInputFormat(insts);
            insts = weka.filters.Filter.useFilter(insts, myNominalData);


            //randomize the order of the instances in the dataset.
            weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
            myRandom.setInputFormat(insts);
            insts = weka.filters.Filter.useFilter(insts, myRandom);

            int trainSize = insts.numInstances() * percentSplit / 100;
            int testSize  = insts.numInstances() - trainSize;

            weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

            cl_Naive.buildClassifier(train);

            string str = cl_Naive.toString();

            int numCorrect = 0;

            for (int i = trainSize; i < insts.numInstances(); i++)
            {
                weka.core.Instance currentInst    = insts.instance(i);
                double             predictedClass = cl_Naive.classifyInstance(currentInst);
                if (predictedClass == insts.instance(i).classValue())
                {
                    numCorrect++;
                }
            }
            res_Naive = (double)((double)numCorrect / (double)testSize * 100.0);
            successPercent.Add(res_Naive);
            //kNN

            weka.core.Instances insts2 = new weka.core.Instances(new java.io.FileReader(fileDirectory));

            insts2.setClassIndex(insts2.numAttributes() - 1);

            cl_Knn = new weka.classifiers.lazy.IBk();

            //Nominal to Binary
            weka.filters.Filter myBinaryData = new weka.filters.unsupervised.attribute.NominalToBinary();
            myBinaryData.setInputFormat(insts2);
            insts2 = weka.filters.Filter.useFilter(insts2, myBinaryData);

            //Normalization
            weka.filters.Filter myNormalized = new weka.filters.unsupervised.instance.Normalize();
            myNormalized.setInputFormat(insts2);
            insts2 = weka.filters.Filter.useFilter(insts2, myNormalized);

            //randomize the order of the instances in the dataset.
            weka.filters.Filter myRandom2 = new weka.filters.unsupervised.instance.Randomize();
            myRandom2.setInputFormat(insts2);
            insts2 = weka.filters.Filter.useFilter(insts2, myRandom2);

            int trainSize2 = insts2.numInstances() * percentSplit / 100;
            int testSize2  = insts2.numInstances() - trainSize2;

            weka.core.Instances train2 = new weka.core.Instances(insts2, 0, trainSize2);

            cl_Knn.buildClassifier(train2);

            string str2 = cl_Knn.toString();

            int numCorrect2 = 0;

            for (int i = trainSize2; i < insts2.numInstances(); i++)
            {
                weka.core.Instance currentInst2   = insts2.instance(i);
                double             predictedClass = cl_Knn.classifyInstance(currentInst2);
                if (predictedClass == insts2.instance(i).classValue())
                {
                    numCorrect2++;
                }
            }
            res_KNN = (double)((double)numCorrect2 / (double)testSize2 * 100.0);
            successPercent.Add(res_KNN);

            //Decision tree
            weka.core.Instances insts3 = new weka.core.Instances(new java.io.FileReader(fileDirectory));

            insts3.setClassIndex(insts3.numAttributes() - 1);

            cl_Tree = new weka.classifiers.trees.J48();



            weka.filters.Filter myNormalized2 = new weka.filters.unsupervised.instance.Normalize();
            myNormalized2.setInputFormat(insts3);
            insts3 = weka.filters.Filter.useFilter(insts3, myNormalized2);


            //randomize the order of the instances in the dataset.
            weka.filters.Filter myRandom3 = new weka.filters.unsupervised.instance.Randomize();
            myRandom3.setInputFormat(insts3);
            insts3 = weka.filters.Filter.useFilter(insts3, myRandom3);

            int trainSize3 = insts3.numInstances() * percentSplit / 100;
            int testSize3  = insts3.numInstances() - trainSize3;

            weka.core.Instances train3 = new weka.core.Instances(insts3, 0, trainSize3);

            cl_Tree.buildClassifier(train3);

            string str3 = cl_Tree.toString();

            int numCorrect3 = 0;

            for (int i = trainSize3; i < insts3.numInstances(); i++)
            {
                weka.core.Instance currentInst3   = insts3.instance(i);
                double             predictedClass = cl_Tree.classifyInstance(currentInst3);
                if (predictedClass == insts3.instance(i).classValue())
                {
                    numCorrect3++;
                }
            }
            res_Tree = (double)((double)numCorrect3 / (double)testSize3 * 100.0);
            successPercent.Add(res_Tree);

            //Neural Network
            weka.core.Instances insts4 = new weka.core.Instances(new java.io.FileReader(fileDirectory));

            insts4.setClassIndex(insts4.numAttributes() - 1);

            cl_NN = new weka.classifiers.functions.MultilayerPerceptron();

            //Nominal to Binary
            weka.filters.Filter myBinaryData2 = new weka.filters.unsupervised.attribute.NominalToBinary();
            myBinaryData2.setInputFormat(insts4);
            insts4 = weka.filters.Filter.useFilter(insts4, myBinaryData2);

            //Normalization
            weka.filters.Filter myNormalized3 = new weka.filters.unsupervised.instance.Normalize();
            myNormalized3.setInputFormat(insts4);
            insts4 = weka.filters.Filter.useFilter(insts4, myNormalized3);

            //randomize the order of the instances in the dataset.
            weka.filters.Filter myRandom4 = new weka.filters.unsupervised.instance.Randomize();
            myRandom4.setInputFormat(insts4);
            insts4 = weka.filters.Filter.useFilter(insts4, myRandom4);

            int trainSize4 = insts4.numInstances() * percentSplit / 100;
            int testSize4  = insts4.numInstances() - trainSize4;

            weka.core.Instances train4 = new weka.core.Instances(insts4, 0, trainSize4);

            cl_NN.buildClassifier(train4);

            string str4 = cl_NN.toString();

            int numCorrect4 = 0;

            for (int i = trainSize4; i < insts4.numInstances(); i++)
            {
                weka.core.Instance currentInst4   = insts4.instance(i);
                double             predictedClass = cl_NN.classifyInstance(currentInst4);
                if (predictedClass == insts4.instance(i).classValue())
                {
                    numCorrect4++;
                }
            }

            res_NN = (double)((double)numCorrect4 / (double)testSize4 * 100.0);
            successPercent.Add(res_NN);

            //SVM
            weka.core.Instances insts5 = new weka.core.Instances(new java.io.FileReader(fileDirectory));

            insts5.setClassIndex(insts5.numAttributes() - 1);

            cl_SVM = new weka.classifiers.functions.SMO();

            //Nominal to Binary
            weka.filters.Filter myBinaryData3 = new weka.filters.unsupervised.attribute.NominalToBinary();
            myBinaryData3.setInputFormat(insts5);
            insts5 = weka.filters.Filter.useFilter(insts5, myBinaryData3);

            //Normalization
            weka.filters.Filter myNormalized4 = new weka.filters.unsupervised.instance.Normalize();
            myNormalized4.setInputFormat(insts5);
            insts5 = weka.filters.Filter.useFilter(insts5, myNormalized4);

            //randomize the order of the instances in the dataset.
            weka.filters.Filter myRandom5 = new weka.filters.unsupervised.instance.Randomize();
            myRandom5.setInputFormat(insts5);
            insts5 = weka.filters.Filter.useFilter(insts5, myRandom5);

            int trainSize5 = insts5.numInstances() * percentSplit / 100;
            int testSize5  = insts5.numInstances() - trainSize5;

            weka.core.Instances train5 = new weka.core.Instances(insts5, 0, trainSize5);

            cl_SVM.buildClassifier(train5);

            string str5 = cl_SVM.toString();

            int numCorrect5 = 0;

            for (int i = trainSize5; i < insts5.numInstances(); i++)
            {
                weka.core.Instance currentInst5   = insts5.instance(i);
                double             predictedClass = cl_SVM.classifyInstance(currentInst5);
                if (predictedClass == insts5.instance(i).classValue())
                {
                    numCorrect5++;
                }
            }
            res_SVM = (double)((double)numCorrect5 / (double)testSize5 * 100.0);
            successPercent.Add(res_SVM);


            for (int i = 0; i < successPercent.Count; i++)
            {
                if ((double)successPercent[i] > max)
                {
                    max   = (double)successPercent[i];
                    count = i + 1;
                }
            }
            for (int i = 0; i < count; i++)
            {
                nameOfAlgo = (string)algorithms[i];
            }

            textBox1.Text = nameOfAlgo + " is the most successful algorithm for this data set." + "(" + max + "%)\n";
        }
Exemple #9
0
        private void button_Discover_Click(object sender, EventArgs e)
        {
            String       s_newInstance = "";
            StreamReader sr            = new StreamReader(fileDirectory);
            StreamWriter sw            = new StreamWriter(@"test.arff", true);
            String       newDirectory  = "test.arff"; // for algortihms
            string       line          = "";
            string       comp          = "@data";
            string       comp2         = "@DATA";

            line = sr.ReadLine();
            do
            {
                sw.WriteLine(line);
                if (line == comp || line == comp2)
                {
                    break;
                }
            } while ((line = sr.ReadLine()) != null);

            for (int i = 0; i < dataGridView1.Rows.Count - 1; i++)
            {
                s_newInstance += (String)dataGridView1.Rows[i].Cells[1].Value + ","; //değiştir
            }
            s_newInstance += "?";
            sw.WriteLine(s_newInstance);

            sr.Close();
            sw.Close();

            switch (count)
            {
            case 1:
                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(newDirectory));
                insts.setClassIndex(insts.numAttributes() - 1);

                weka.filters.Filter myNominalData = new weka.filters.unsupervised.attribute.Discretize();
                myNominalData.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNominalData);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                double predictedClass = cl_Naive.classifyInstance(insts.instance(0));
                Console.WriteLine("hey", insts.instance(0));
                textBox3.Text = insts.classAttribute().value(Convert.ToInt32(predictedClass));

                break;

            case 2:
                weka.core.Instances insts2 = new weka.core.Instances(new java.io.FileReader(fileDirectory));

                insts2.setClassIndex(insts2.numAttributes() - 1);

                //Nominal to Binary
                weka.filters.Filter myBinaryData = new weka.filters.unsupervised.attribute.NominalToBinary();
                myBinaryData.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, myBinaryData);

                //Normalization
                weka.filters.Filter myNormalized = new weka.filters.unsupervised.instance.Normalize();
                myNormalized.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, myNormalized);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom2 = new weka.filters.unsupervised.instance.Randomize();
                myRandom2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, myRandom2);

                double predictedClass2 = cl_Knn.classifyInstance(insts2.instance(0));
                textBox3.Text = insts2.classAttribute().value(Convert.ToInt32(predictedClass2));
                break;

            case 3:
                weka.core.Instances insts3 = new weka.core.Instances(new java.io.FileReader(newDirectory));

                insts3.setClassIndex(insts3.numAttributes() - 1);
                weka.filters.Filter myNormalized2 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized2.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, myNormalized2);


                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom3 = new weka.filters.unsupervised.instance.Randomize();
                myRandom3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, myRandom3);

                double predictedClass3 = cl_Tree.classifyInstance(insts3.instance(0));
                textBox3.Text = insts3.classAttribute().value(Convert.ToInt32(predictedClass3));
                break;

            case 4:
                weka.core.Instances insts4 = new weka.core.Instances(new java.io.FileReader(newDirectory));
                insts4.setClassIndex(insts4.numAttributes() - 1);
                //cl = new weka.classifiers.functions.MultilayerPerceptron();

                //Nominal to Binary
                weka.filters.Filter myBinaryData2 = new weka.filters.unsupervised.attribute.NominalToBinary();
                myBinaryData2.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myBinaryData2);

                //Normalization
                weka.filters.Filter myNormalized3 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized3.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myNormalized3);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom4 = new weka.filters.unsupervised.instance.Randomize();
                myRandom4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myRandom4);

                double predictedClass4 = cl_NN.classifyInstance(insts4.instance(0));
                textBox3.Text = insts4.classAttribute().value(Convert.ToInt32(predictedClass4));

                break;

            case 5:
                weka.core.Instances insts5 = new weka.core.Instances(new java.io.FileReader(newDirectory));

                insts5.setClassIndex(insts5.numAttributes() - 1);


                //Nominal to Binary
                weka.filters.Filter myBinaryData3 = new weka.filters.unsupervised.attribute.NominalToBinary();
                myBinaryData3.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myBinaryData3);

                //Normalization
                weka.filters.Filter myNormalized4 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized4.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myNormalized4);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom5 = new weka.filters.unsupervised.instance.Randomize();
                myRandom5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myRandom5);

                double predictedClass5 = cl_SVM.classifyInstance(insts5.instance(0));
                textBox3.Text = insts5.classAttribute().value(Convert.ToInt32(predictedClass5));
                break;

            default:
                textBox3.Text = "Error!";
                break;
            }
        }