// GET: Training/Delete/5 public ActionResult Delete(int id) { training tr = trs.getOneTraining(id); trs.DeleteTraining(id); return(RedirectToAction("Index")); }
public ActionResult Delete(int id, FormCollection collection) { training t = trainingService.GetById(id); trainingService.Delete(t); trainingService.Commit(); return(RedirectToAction("Index")); }
// Start is called before the first frame update public void trainingStart() { // Crée des gènes randoms int size = batches * carsPerBatch; genes = new training[size]; for (int i = 0; i < size; i++) { genes[i] = new training(layers); } newBatch(); }
public ActionResult Create(training t) { if (ModelState.IsValid) { trs.addTraining(t); return(RedirectToAction("Index")); } else { return(View()); } }
public ActionResult Edit(int id, training train) { training tr = trs.getOneTraining(id); tr.lieu = train.lieu; tr.dateDebut = train.dateDebut; tr.dateFin = train.dateFin; tr.nombreInscrit = train.nombreInscrit; tr.theme = train.theme; trs.UpdateTraining(tr); return(RedirectToAction("Index")); }
public bool AddTrainings(string userId, string trainings, int TPID) { trainer trainer = db.trainer.FirstOrDefault(x => x.ID == userId); trainingProgram trainingProgram = db.trainingProgram.FirstOrDefault(x => x.TPID == TPID); if (trainer.TRID != trainingProgram.trainer_TRID) { return(false); } else { try { List <int> TIDList = new List <int>(); var trainingArray = JsonConvert.DeserializeObject <List <TrainingDTO> >(trainings); foreach (TrainingDTO x in trainingArray) { var t = new training { exercise_EID = x.exercise_EID, numberOfSets = x.numberOfSets == null ? null : x.numberOfSets, numberOfReps = x.numberOfReps == null ? null : x.numberOfReps, durationMin = x.durationMin == null ? null : x.durationMin, restBetweenMin = x.restBetweenMin == null ? null : x.restBetweenMin, sunday = x.sunday, monday = x.monday, tuesday = x.tuesday, wednesday = x.wednesday, thursday = x.thursday, friday = x.friday, saturday = x.saturday, className = x.className, timeOfDay = x.timeOfDay }; db.training.Add(t); db.SaveChanges(); TIDList.Add(t.TID); } foreach (int x in TIDList) { db.trainingProgramTraining.Add(new trainingProgramTraining { trainingProgram_TPID = TPID, training_TID = x }); } db.SaveChanges(); return(true); } catch (Exception) { return(false); } } }
public ActionResult Edit(int id, Training model) { training t = trainingService.GetById(id); t.Former = model.Former; t.Start_date = model.Start_date; t.End_date = model.End_date; t.Place = model.Place; t.Price = model.Price; trainingService.Update(t); trainingService.Commit(); return(RedirectToAction("Index")); }
// GET: Training/Edit/5 public ActionResult Edit(int id) { if (id == null) { return(new HttpStatusCodeResult(HttpStatusCode.BadRequest)); } training train = trs.getOneTraining(id); if (train == null) { return(HttpNotFound()); } return(View(train)); }
// GET: Training/Edit/5 public ActionResult Edit(int id) { training t = trainingService.GetById(id); Training model = new Training { Former = t.Former, Start_date = t.Start_date, End_date = t.End_date, Place = t.Place, Price = t.Price }; return(View(model)); }
public ActionResult Create(Training model) { training t = new training { Former = model.Former, Start_date = model.Start_date, End_date = model.End_date, Place = model.Place, Price = model.Price }; trainingService.Add(t); trainingService.Commit(); return(RedirectToAction("Index")); }
// GET: Project/Delete/5 public ActionResult Delete(int id) { HttpClient client = new HttpClient(); client.BaseAddress = new Uri("http://localhost:9080"); client.DefaultRequestHeaders.Accept.Add(new System.Net.Http.Headers.MediaTypeWithQualityHeaderValue("application/json")); HttpResponseMessage response = client.GetAsync("Advyteam-web/api/training" + id).Result; training training = new training(); if (response.IsSuccessStatusCode) { training = response.Content.ReadAsAsync <training>().Result; } else { ViewBag.training = "erreur"; } return(View(training)); }
private void button3_Click(object sender, EventArgs e) { this.Close(); training t = new training(); t.Show(); }
public void UpdateTraining(training tr) { utwk.TrainingRepository.Update(tr); }
public void addTraining(training t) { utwk.TrainingRepository.Add(t); utwk.Commit(); }
public int Change(training t) { return(dao.Change(t)); }
public int Add(training t) { return(dao.Add(t)); }
public int Del(training t) { return(dao.Del(t)); }
public void sendDeath(int id, float score) // Nous informe qu'une voiture est morte { this.aliveCars--; updateTextInfo(); genes[id].score = score; if (this.aliveCars == 0) // Toutes les voitures sont mortes { if (currentBatch < batches) { newBatch(); return; } } else { return; // On attend que tout le monde meurt } // On repère les 3 meilleurs int size = batches * carsPerBatch; int[] bestIds = { 0, 0, 0 }; float[] bestScores = { 0f, 0f, 0f }; for (int i = 0; i < size; i++) { bool done = false; for (int iBest = 0; iBest < 3; iBest++) { if (!done && (genes[i].score > bestScores[iBest])) { shiftIntArray(bestIds, iBest); bestIds[iBest] = i; shiftFloatArray(bestScores, iBest); bestScores[iBest] = genes[i].score; done = true; } } } // Premiers candidats: les 3 meilleurs de la dernière génération training[] nextGen = new training[size]; for (int i = 0; i < 3; i++) { nextGen[i] = new training(genes[bestIds[i]].brain); } // Quetrième: gènes avec la moyenne de toutes les voitures, pondérée avec leur score. // On est obligé de séparer en 2 tableaux gene[] genesOnly = new gene[size]; for (int i = 0; i < size; i++) { genesOnly[i] = genes[i].brain; } float[] scoresOnly = new float[size]; for (int i = 0; i < size; i++) { scoresOnly[i] = genes[i].score; } nextGen[3] = new training(gene.weightedAverage(genesOnly, scoresOnly)); // Cinquième: gènes avec la moyenne non pondérée de toutes les coitures float[] one = new float[size]; for (int i = 0; i < size; i++) { one[i] = 1f; } nextGen[4] = new training(gene.weightedAverage(genesOnly, one)); // Six et septième: idem mais avec les 3 premiers seulement gene[] bo3Genes = new gene[3]; float[] bo3one = { 1f, 1f, 1f }; for (int i = 0; i < 3; i++) { bo3Genes[i] = genes[bestIds[i]].brain; } nextGen[5] = new training(gene.weightedAverage(bo3Genes, bestScores)); nextGen[6] = new training(gene.weightedAverage(bo3Genes, bo3one)); // Pour les autres, soit on: // - Met un nouveau gène aléatoire // - Fait une moyenne sur tous les gènes pondérée aléatoirement for (int i = 7; i < size; i++) { // Pour les 2 cas, on regarde la parité de i if ((i % 2) == 1) { // Nouveau gène aléatoire nextGen[i] = new training(layers); } else { // Moyenne pondérée aléatoire float[] randomWeights = new float[size]; for (int iWeight = 0; iWeight < size; iWeight++) { randomWeights[iWeight] = Random.Range(0f, 100f); } nextGen[i] = new training(gene.weightedAverage(genesOnly, randomWeights)); } } generation++; genes = nextGen; currentBatch = 0; // On scale le cooldown checkpoint cpCooldown *= generationCooldownScale; if (cpCooldown < finalCpCooldown) { cpCooldown = finalCpCooldown; } newBatch(); }
public training SelectOne(training us) { return(ist.SelectBy(e => e.tra_id == us.tra_id)[0]); }
public bool Upd(training us) { return(ist.Upd(us)); }
public bool Add(training us) { return(ist.Add(us)); }
public bool Del(training us) { return(ist.Del(us)); }
void Start() { training = GameObject.Find("Training Canvas").GetComponent <training>(); }