public region_side[] get_region_sides() { double L; List <region_side> result = new List <region_side>(); if (terms.Count == 1) { L = Math.Abs(terms[0].Parametrs[2] - terms[0].Parametrs[0]); region_side[] testc = new region_side[] { new region_side(terms[0], variable_index, L) }; return(testc); } else { L = Math.Abs(terms.Last().Pick - terms[0].Pick); for (int i = 0; i < terms.Count - 1; i++) { result.Add(new region_side(terms[i], terms[i + 1], variable_index, L)); } return(result.ToArray()); } }
public override SAFuzzySystem TuneUpFuzzySystem(SAFuzzySystem Approximate, ILearnAlgorithmConf conf) // + override { result = Approximate; List <KnowlegeBaseSARules> Archive = new List <KnowlegeBaseSARules>(); List <double> ErrorsArchive = new List <double>(); var config = (DynamicTuneConf)conf; maxError = config.MaxError; RuleCount = config.RulesCount; TryCount = config.TryCount; double error = result.RMSEtoMSEdiv2forLearn(result.approxLearnSamples(result.RulesDatabaseSet[0])); var kbToOptimize = new KnowlegeBaseSARules(result.RulesDatabaseSet[0]); var kbBest = new KnowlegeBaseSARules(kbToOptimize); double errorBefore = Double.MaxValue; result.UnlaidProtectionFix(kbToOptimize); List <input_space> variable_spaces = new List <input_space>(); for (int i = 0; i < result.LearnSamplesSet.InputAttributes.Count; i++) { List <Term> terms_of_variable = new List <Term>(); terms_of_variable = kbToOptimize.TermsSet.Where(term => term.NumVar == i).ToList(); variable_spaces.Add(new input_space(terms_of_variable, i)); } int indexRegion = -1, indexVar = -1, number_of_input_variables = variable_spaces.Count; int tryCount = 0; while (error > maxError) { if (Double.IsInfinity(error)) { throw new Exception("Something went wrong, error is Infinity, region: " + indexRegion); } if (Double.IsNaN(error)) { throw new Exception("Something went wrong, error is NaN, region: " + indexRegion); } region_side[][] sides = new region_side[number_of_input_variables][]; for (int i = 0; i < number_of_input_variables; i++) { sides[i] = variable_spaces[i].get_region_sides(); } var cartresult = CartesianProduct.Get(sides); List <region2> regions = new List <region2>(); foreach (var x in cartresult) { regions.Add(new region2(x.ToList(), result, variable_spaces)); } List <double> region_errors = regions.Select(x => x.region_error()).ToList(); indexRegion = region_errors.IndexOf(region_errors.Max()); for (int i = 0; i < region_errors.Count; i++) { if (Double.IsNaN(region_errors[i]) || Double.IsInfinity(region_errors[i]) || Double.IsNegativeInfinity(region_errors[i]) || Double.IsPositiveInfinity(region_errors[i])) { region_errors[i] = 0; } } List <double> variable_errors = regions[indexRegion].variable_errors(); bool check1 = false; for (int i = 1; i < variable_errors.Count; i++) { if (variable_errors[i - 1] != variable_errors[i]) { check1 = true; break; } } if (!check1) { indexVar = StaticRandom.Next(variable_errors.Count - 1); } else { indexVar = variable_errors.IndexOf(variable_errors.Max()); } Term new_term = regions[indexRegion].new_term(indexVar); result.RulesDatabaseSet[0] = kbToOptimize; kbToOptimize.TermsSet.Add(new_term); // Rules (CHECK REFERENCE TYPES) int @var = indexVar; var rulesLeft = kbToOptimize.RulesDatabase.Where( rule => rule.ListTermsInRule.Contains(regions[indexRegion].sides[indexVar].left)).ToList(); var rulesRight = kbToOptimize.RulesDatabase.Where( rule => rule.ListTermsInRule.Contains(regions[indexRegion].sides[indexVar].right)).ToList(); for (int j = 0; j < rulesLeft.Count; j++) { int[] order = new int[rulesLeft[j].ListTermsInRule.Count]; for (int k = 0; k < rulesLeft[j].ListTermsInRule.Count; k++) { Term temp_term = rulesLeft[j].ListTermsInRule[k]; if (temp_term == regions[indexRegion].sides[indexVar].left) { temp_term = new_term; } order[k] = kbToOptimize.TermsSet.FindIndex(x => x == temp_term); } ///!!!! double temp_approx_Values = kbToOptimize.RulesDatabase[j].IndependentConstantConsequent; /* double[] temp_approx_RegressionConstantConsequent = * kbToOptimize.RulesDatabase[j].RegressionConstantConsequent.Clone() as double[]; */ SARule temp_rule = new SARule( kbToOptimize.TermsSet, order, temp_approx_Values); // double[] dC = null; //!!! temp_rule.IndependentConstantConsequent = KNNConsequent.NearestApprox(result, temp_rule.ListTermsInRule.ToList()); kbToOptimize.RulesDatabase.Add(temp_rule); //!!! rulesLeft[j].IndependentConstantConsequent = KNNConsequent.NearestApprox(result, rulesLeft[j].ListTermsInRule.ToList()); // rulesLeft[j].RegressionConstantConsequent = (double[])dC.Clone(); } foreach (var rule in rulesRight) { //!!! rule.IndependentConstantConsequent = KNNConsequent.NearestApprox( result, rule.ListTermsInRule.ToList()); // rule.RegressionConstantConsequent = dC; } variable_spaces[indexVar].terms.Add(new_term); variable_spaces[indexVar].terms.Sort(new CompararerByPick()); // Re-evaluate the system's error error = result.RMSEtoMSEdiv2forLearn(result.ErrorLearnSamples(kbToOptimize)); if ((kbToOptimize.RulesDatabase.Count > config.RulesCount)) { break; } #if Console Console.WriteLine(error + " " + kbToOptimize.TermsSet.Count + " terms\n"); for (int i = 0; i < variable_spaces.Count; i++) { Console.WriteLine(variable_spaces[i].terms.Count + " термов по " + i + "му параметру\n"); } #endif result.RulesDatabaseSet[0] = kbToOptimize; // Get the best knowledge base on the 1st place if (error < errorBefore) { kbBest = new KnowlegeBaseSARules(kbToOptimize); errorBefore = error; tryCount = 0; } else { tryCount++; } if (tryCount > TryCount) { break; } } result.RulesDatabaseSet[0] = kbBest; RuleCount = kbBest.RulesDatabase.Count; TryCount = tryCount; return(result); }